
CS 415
Operating Systems Practicum

Oliver Kennedy

Who is this yutz?

Oliver Kennedy, grad student by day

4124 Upson Hall

Office Hours: M/W 1:30-3:00

415: The Good

See what goes on “under the hood”

Get to experience the whole thing

Design the core of an OS and build an
app on top of it

Play around with fun toys

415: The Bad

You need to know C++/Assembly

You need a good architecture background

You’ll be spending a lot of time in the
Systems lab

415: The Ugly

Grading

5 Projects, 20% each

Meetings with me

Groups of 2: The group gets the grade

Cheating

Don’t

Should you choose to accept it...

Threads 1: Thread Basics

Threads 2: Preemption

Networking 1: UDP

Networking 2: TCP

Final Project: Simulated Ad-hoc

Where to go?

C/C++

Kernighan & Ritchie: The C Programming Language

Oualline: Practical C Programming

Visual Studio’s Help Section

x86 ASM

http://www.scs.stanford.edu/nyu/04fa/lab/reference.html

Review Sessions

Me

Final Words

CMS

http://cms.csuglab.cornell.edu/

Review Sessions

C++ for Java programmers

Now (PH 203)

Computer Architecture

Thursday: 3:15 (PH 203?)

C++ for Java Programmers
Oliver Kennedy

based on lecture slides by Tom Roeder

Why use C++?

A pretty face on assembly

Fast/Compiles to native machine code

Grants access to hardware

Simple

Most commonly used languages are
based on C

OO features available

Why don’t more people use C++?

Explicit memory management

Leaks, Accessing freed memory...

Language features dependent on platform

Size of primitives, Library availability

Limited typechecking

Header Files

C++ Files

Header File Source File
int myFunc(int myVar)
class myClass extends mySuperclass {
 public:
 int myClassVar;
 myClass(int myVar);
 int myMethod(int myVar);
 private:
 int myPrivateMethod(int myVar);
}

int globalVar;

int myFunc(int myVar){ ... }
int myClass:myClassVar(int myVar){
 myClassVar = myVar;
 myClassVar++;
 this.myClassVar++;
}
int myClass:myMethod(int myVar){ ... }
int myClass:myPrivateMethod...

Primitives

Integer Types: int, short, long

short(2) <= int(4/8) <= long(8/16)

Floating Point Types: float, double

float(16) <= double(32)

Character Type: char

Windows uses WCHAR

Control Flow

if(...) { ... } else { ... }

while(...) { ... }

for(... ; ... ; ...) { ... }

Functions

int myFunc(int myVar) { return myVar; }

myVar = myFunc(4);

Programs start at int main()

Examples: main()/arg

The Enum/Typedef

enum maps text in the code to an integer

enum foo { bar, baz, bat };

enum foo myVar = bar;

enum color { blue = 7, green = 137};

typedef creates an abbreviation for a type

typedef int foo;

foo myVar = 3;

The Struct

Structures are like mini-classes

No methods, no superclass, just variables

struct foo { int bar; int baz; };

struct foo myVar;

myVar.bar = 2

typedef struct foo {int bar;} baz;

baz myVar;

Classes

No interfaces

... but we have multiple inheritance

class myClass extends mySuperClass { ... }

Classes are separated into 3 sections
denoted by public: private: protected:

‘virtual’ denotes a function meant to be
overridden.

Example: Public/Private

Java C++

Example: Virtual

Java

C++

Classes (cont)

Classes are broken down into 2 parts

Definition (Header File)

Describes the class

Implementation (Source)

The methods

method names preceded by
`ClassName::`

Example: Classes

Definition Implementation

Arrays

Arrays work like they do in java

... if you know how big the array will be
in advance

and no .length variable

Static Array Sizes: int myArray[20]

Dynamic Array sizes: see pointers

Strings

Just an array of characters

char *myString, or char myString[20];

Terminated with ‘\0’

Pointers

& gets a variable’s address

* dereferences or declares a pointer

int *myPointer = &myIntVar;

*myPointer++;

myPointer = (int *)malloc(sizeof(int))

free(myPointer)

Pointers (continued)

You must call free() on each pointer you
malloc, but only after you’re done!

You can allocate arrays with malloc(

malloc(sizeof(int) * n)

These work like normal arrays.

Classes use new and delete instead of
malloc and free()

Example: Memory

C++ Java

Example: Pointer Usage

Special Pointers

Anonymous pointers

void *

Analogous to Java’s Object

Function pointers

int call_me(float a) { return (int)a; }

int (*fp)(float) = &call_me

(*fp)(3.0)

Parameter Passing

Consider: b = 3; foo(b); cout << b;

void foo(int a) { a += 2; } // outputs 3

void foo(int *a) { (*a) += 2; } //outputs 5

In Java Objects/Arrays behave like case 2

In C Pointers/Arrays behave like case 2

Careful...

No garbage collection, free what you take

Arrays aren’t bounds checked (and
no .length)

Variables may not be cleared after
allocation. (Set pointers to NULL)

Check for NULL pointers before each use!

Packages like Purify exist to help

The Preprocessor

#define foo 42

#define foo(a, b) a+b

#include

#ifdef / #else / #end

#ifdef foo means that if foo is not defined,
everything between that and #else will be
treated as if it were commented out

Example: Precompiler

