CS 415
Operating Systems Pract1cum

LR b, S, Tt DS Pors LW DAR F A Pty =0 A it o v o PO L S

Computer Architecture Review



The Dawn of Computmg

mm&-m“m Y Tt it L 2 e SN s PR




The OS!

IR b S Tt G PR P R ST PAR A Pt S0 AT St T e e Nl o b TR IR e i st O P i s i

\ i




Multitasking

. 2 i : - e s L T vy, T e
R i A A T A Pk et :rnliadapes TR N R b o i B Y R S TR




So what’s under the hood?

mmmmm“ﬂﬁ T i g g g Y b NI EE R e P e




Well... not quite

IR b S Tt G PR P R ST PAR A Pt S0 AT St T e e Nl o b TR IR e i st O P i s i

B RN ﬁ
(0 ST N T B . 22




Networks

e T T L e - PRI T e RO T =




A CPU

AN KR o Tt GRS e LTS A et S LTSl R s sV b n R NN e L e ety e R

o Registers:

o The CPU’s short term memory.
o Arithmetic Logic Unit:

o Where most of the work gets done.
o Floating Point Unit:

o Handles the decimal calculations.
o Cache:

o Reduces memory access times.



The Pipeline

e L e PR Eh- L e R S Pt

o A lot of computation goes into a single instruction.
o Can some of this computation be done in parallel?
o Set up an assembly line.
o Each stage processes a little and passes it on.
o Less work per stage means stages go by faster.
o Why not have lots and lots of stages?
o What happens if we don’t know what will happen next?

o What happens if one instruction needs data from an earlier
instruction?



The Pipeline

PN e St Tt SR P STt A Pty S B AT s ML bt e e gy e i s Tl

o Avoiding delays:
o Branch Prediction.
o Instruction Reordering.
o Currently, most pipelines are 10-15 stages in length.
o Fetch the instruction
o Decode/Dispatch the instruction.
o Get necessary data.
o Perform necessary calculations.

o Write the results to registers/memory.



The Memory Hlerarchy

mm%m&wwt A Pty S Ll PV e Ay, S e

o Registers: 8-64 integers/floats at a time.
o Available immediately.
o L1 Cache: ~32KB Data, ~32KB Instructions.
o Short access time (2-3 cycles).
o L2 Cache: 1-2 MB.
o Moderate access time (~10-20 cycles).
o Main Memory: up to 4GB or more.
o Long access time (on the order of 100 cycles).

o Prefetching is used to increase cache hits.



Traps/Interrupts

mﬂﬁﬂwﬂw“iﬂ* o e TR g s 1.-.1-_'____.+p il 'u“%-;r_m R Mwmw

o What does the hardware do when something happens?
o The software does something wrong. (Divide by 0)
o The software asks for a wakeup call.
o A packet arrives over the network.

o It could just set a flag and have the software check for it.
o Processor intensive.
o Defeats the point of an operating system.

o Instead, the processor pauses what 1t’s doing and and calls a
callback.



Traps/Interrupts

PN e St Tt SR P STt A Pty S B AT s ML bt e e gy e i s Tl

o How does the processor know what code to execute?

o Most architectures define a datastructure for a Interrupt Vector
Table.

o States where callbacks are stored.
o ... and sometimes how they should be called.

o x86 uses the first 1k of memory.



Traps/Interrupts

mﬂ*wmw“ih o e TR g s 'l--:-_'____.-hu ol .uﬁiq"”‘.:r.” o Mwmw

o But what happens if an interrupt 1s interrupted?
o Disable interrupts while processing one.
o Have multiple levels of interrupt.

o Most architectures keep a short queue of interrupts waiting to
be delivered.

o But what about traps?

o Identical to interrupts, except triggered by code (/ by 0).



10

mﬂ*wmw“ih o e TR g s 'l--:-_'____.-hu ol .uﬁiq"”‘.:r.” o Mwmw

o Hard disks are slow. Do we want to wait 1dly for data to arrive?
o Signal data availability with an interrupt.
o Also works with networks. (a packet just arrived)

o The hard drive’s connected to the disk controller...

o A small piece of hardware (the controller) controls the 10
device and communicates with the processor via a bus.

o A small piece of software (a driver) interprets the data sent to
the processor by the controller and communicates this
information to the OS.

o Finally, the OS notifies the program that data is available.



Protection Levels

mﬂﬁﬂwﬂw“iﬂ* o e TR g s 1.-.1-_'____.+p il 'u“%-;r_m R Mwmw

o If the OS is going to be managing multiple programs, how does it
stop them from misbehaving?

o Have multiple access levels. (user, system, etc..)
o Restrict access to certain instructions in less privileged levels.

o Most architectures have an instruction to give up privileges, but
no instruction to regain them.

o But how can the OS access the privileged instructions?

o Traps! (The famous INT 21)



Memory Management Segments

mm%m&wwt A Pty S Ll PV e Ay, S e

o The 80286 was a 16 bit processor.
o It could address 2216 (64k) of memory.

o 64Kk is tiny! Couldn’t it use more?

o It divided memory up into 64k segments. Applications
that needed more could set a segment register to change
which segment their addresses pointed to.

o The 80386 was a 32 bit processor.
o It could address 2432 (4 gb) of memory.

o Segments were still convenient for isolating applications from
each other.



Memory Management Segments

L e B R il PR
o The x86 architecture spe01ﬁes several Segment Descriptor Tables
which list blocks of memory.

o The segment register(s) serve as an index into these tables.

o The OS can allocate a chunk of memory to a process by
adding an entry to these tables.

o The process thinks it has the whole address space to itself.

o When switching processes, the OS just changes the
segment register.

o This solution gets messy quickly.
o All the memory has to be allocated upfront

o Reallocating can lead to fragmentation.



Memory Management Pages

mm%m&wwt A Pty S Ll PV e Ay, S e

o Instead, let’s break memory up into a large number of chunks
(pages) and hand them to processes as needed.

o Create a Page Table

o When the CPU is told to access an address in memoryj, it
consults this table and translates the virtual address to a
physical address.

o A program has access to the whole 4 gb range of addresses.
o ... even if the computer doesn’t have 4 gb of memory.
o The OS can allocate pages as they’re needed.

o When switching processes, the OS tells the CPU to use a
different set of translations.



Memory Management Pages

mm%m&wwt A Pty S Ll PV e Ay, S e

o What happens when code tries to access an unallocated page?

o On the x86, a trap called a Page Fault occurs.

o The OS can allocate the page and the application is none the
wiser that anything happened.

o The Translation Lookaside Buffer
o The Page Table is stored in main memory. (slow)
o The CPU keeps a cache of recent translations.
o When switching processes, this cache needs to be cleared.

o Major slowdown!



Memory Management Pages

mm%m&wwt A Pty S Ll PV e Ay, S e

o The x86 Way:
o The Page Table datastructure is defined by the architecture.
o A register points to the active page table.
o The processor updates the TLB manually.
o The MIPS Way:
o The OS can store Page Tables as it sees fit.

o When a TLB miss occurs, a trap occurs and the OS updates
the TLB.




Memory Management: DMA

Lt T e LRI L e
o Interrupts are slow.
o Pausing running code takes a lot of work.
o ... doubly so if you need to do anything complex.

o Transferring data from disk to memory involves a lot of
interrupts.

o Let the IO controller write directly to memory.
o This 1s called Direct Memory Access
o Another twist: Memory Mapped IO.

o Let the disk controller pretend to be a portion of memory.




Synchronization

m 11: E - ilﬂ- PRI L hu::ﬂ:l.ﬂh“ L ek W T .u‘-i:: PR T P

o How do you ensure that two processes
don’t try and modify a variable at the

same time”? P] +200 PZ -100

o Have a variable to lock? R € ad balanc €
100
o But the variable suffers the R ead b alance
same problem. 100
, Write balance
o Turn off interrupts? 300

Write balance
0

o Ugly, but it works.

o Test and Set.



