
CS 415
Operating Systems Practicum

Computer Architecture Review

The Dawn of Computing

The OS!

Multitasking

So what’s under the hood?

Well... not quite

Networks

A CPU

Registers:

The CPU’s short term memory.

Arithmetic Logic Unit:

Where most of the work gets done.

Floating Point Unit:

Handles the decimal calculations.

Cache:

Reduces memory access times.

The Pipeline

A lot of computation goes into a single instruction.

Can some of this computation be done in parallel?

Set up an assembly line.

Each stage processes a little and passes it on.

Less work per stage means stages go by faster.

Why not have lots and lots of stages?

What happens if we don’t know what will happen next?

What happens if one instruction needs data from an earlier
instruction?

The Pipeline

Avoiding delays:

Branch Prediction.

Instruction Reordering.

Currently, most pipelines are 10-15 stages in length.

Fetch the instruction

Decode/Dispatch the instruction.

Get necessary data.

Perform necessary calculations.

Write the results to registers/memory.

The Memory Hierarchy

Registers: 8-64 integers/floats at a time.

Available immediately.

L1 Cache: ~32KB Data, ~32KB Instructions.

Short access time (2-3 cycles).

L2 Cache: 1-2 MB.

Moderate access time (~10-20 cycles).

Main Memory: up to 4GB or more.

Long access time (on the order of 100 cycles).

Prefetching is used to increase cache hits.

Traps/Interrupts

What does the hardware do when something happens?

The software does something wrong. (Divide by 0)

The software asks for a wakeup call.

A packet arrives over the network.

It could just set a flag and have the software check for it.

Processor intensive.

Defeats the point of an operating system.

Instead, the processor pauses what it’s doing and and calls a
callback.

Traps/Interrupts

How does the processor know what code to execute?

Most architectures define a datastructure for a Interrupt Vector
Table.

States where callbacks are stored.

... and sometimes how they should be called.

x86 uses the first 1k of memory.

Traps/Interrupts

But what happens if an interrupt is interrupted?

Disable interrupts while processing one.

Have multiple levels of interrupt.

Most architectures keep a short queue of interrupts waiting to
be delivered.

But what about traps?

Identical to interrupts, except triggered by code (/ by 0).

IO

Hard disks are slow. Do we want to wait idly for data to arrive?

Signal data availability with an interrupt.

Also works with networks. (a packet just arrived)

The hard drive’s connected to the disk controller...

A small piece of hardware (the controller) controls the IO
device and communicates with the processor via a bus.

A small piece of software (a driver) interprets the data sent to
the processor by the controller and communicates this
information to the OS.

Finally, the OS notifies the program that data is available.

Protection Levels

If the OS is going to be managing multiple programs, how does it
stop them from misbehaving?

Have multiple access levels. (user, system, etc..)

Restrict access to certain instructions in less privileged levels.

Most architectures have an instruction to give up privileges, but
no instruction to regain them.

But how can the OS access the privileged instructions?

Traps! (The famous INT 21)

Memory Management: Segments

The 80286 was a 16 bit processor.

It could address 2^16 (64k) of memory.

64k is tiny! Couldn’t it use more?

It divided memory up into 64k segments. Applications
that needed more could set a segment register to change
which segment their addresses pointed to.

The 80386 was a 32 bit processor.

It could address 2^32 (4 gb) of memory.

Segments were still convenient for isolating applications from
each other.

Memory Management: Segments
The x86 architecture specifies several Segment Descriptor Tables
which list blocks of memory.

The segment register(s) serve as an index into these tables.

The OS can allocate a chunk of memory to a process by
adding an entry to these tables.

The process thinks it has the whole address space to itself.

When switching processes, the OS just changes the
segment register.

This solution gets messy quickly.

All the memory has to be allocated upfront

Reallocating can lead to fragmentation.

Memory Management: Pages

Instead, let’s break memory up into a large number of chunks
(pages) and hand them to processes as needed.

Create a Page Table

When the CPU is told to access an address in memory, it
consults this table and translates the virtual address to a
physical address.

A program has access to the whole 4 gb range of addresses.

... even if the computer doesn’t have 4 gb of memory.

The OS can allocate pages as they’re needed.

When switching processes, the OS tells the CPU to use a
different set of translations.

Memory Management: Pages

What happens when code tries to access an unallocated page?

On the x86, a trap called a Page Fault occurs.

The OS can allocate the page and the application is none the
wiser that anything happened.

The Translation Lookaside Buffer

The Page Table is stored in main memory. (slow)

The CPU keeps a cache of recent translations.

When switching processes, this cache needs to be cleared.

Major slowdown!

Memory Management: Pages

The x86 Way:

The Page Table datastructure is defined by the architecture.

A register points to the active page table.

The processor updates the TLB manually.

The MIPS Way:

The OS can store Page Tables as it sees fit.

When a TLB miss occurs, a trap occurs and the OS updates
the TLB.

Memory Management: DMA

Interrupts are slow.

Pausing running code takes a lot of work.

... doubly so if you need to do anything complex.

Transferring data from disk to memory involves a lot of
interrupts.

Let the IO controller write directly to memory.

This is called Direct Memory Access

Another twist: Memory Mapped IO.

Let the disk controller pretend to be a portion of memory.

Synchronization

How do you ensure that two processes
don’t try and modify a variable at the
same time?

Have a variable to lock?

But the variable suffers the
same problem.

Turn off interrupts?

Ugly, but it works.

Test and Set.

Read balance
Read balance

P1 P2

100

100

Write balance
300

+200 -100

Write balance
0

