COM S 414 Operating Systems Laboratory
Summer 2004

Setymp/Longjmp Solutions
Part A

See handout.

Part B

1) (d) 1don’tlike 1 very much, but 17 is my favorite number

Look at the jmp_buf structure that was used to restore the register values when longjmp
was called. (We know that the structure can be found at address 00430240 based on the
disassembly given below the longjmp macro call within current_function) The first word
in the structure tells us that the restored stack frame (ebp) is set to address 0044fe38.
Visual C++ .NET always leaves one 32-bit entry blank between ebp and the first
variable. Two 32-bit entries are placed between each additional variable. Given this
information, we know that the first variable value can be found at [ebp-8]. If we look at
address 0044fe30 we see that the value there is 00000011 hexadecimal which is equal to
17 in decimal. The longjmp return value can never be 0. It is automatically set to a value
of 1 if that would be the case.

2) (c) [ebp+12]. To see why, look back at your notes on the stack calling conventions
used on the Intel architecture. When a new function is called, the first thing that happens
is that all function parameters are pushed onto the stack beginning with the n’th paramter
and ending with the first. The second thing that happens is that the instruction pointer
(eip) in the current function is pushed onto the stack. Execution begins in the new
function. Convention dictates that the function header will begin by pushing the old
stack frame pointer (ebp) onto the stack. Finally, the new stack frame is set equal to the
current top of the stack (the esp value). So, to summarize, the first function parameter
was pushed onto the stack followed by the old function’s return address followed by the
old stack frame. Since esp always points to the address of the last thing pushed (rather
than the next location to be pushed to) we only need to add 12 bytes to move three 32-bit
positions up the stack to get to that second parameter.

3) (e) [ebp-8]. Local variables are placed from lowest to highest below the stack frame
pointer (ebp). Since x is the one (and only) variable in the function it will be stored at
ebp-8. The two assembly statements will not make any difference in this case.

4) (e) eax,ecx,edx,eflags are the only non-segment registers not saved by setjmp. It
wouldn’t do us any good to save the value of eax, though, since it is used to store the
return value from longjmp. Hence, the answer is ecx, edx, and eflags.



5) (f) The first statement is not correct. Different processes may have different values in
the segment registers and the operating system will not allow one process to jump into or
otherwise execute/modify code in another process using the setjmp/longjmp library
functions on their own. The second statement is also false. longjmp will restore local
variables to their state at the time setjmp was called if they are register variables. The last
statement is true. We can use setjmp/longjmp as a type of context switch between user-
level threads. This is possible because user-level threads share the same code, data, and
memory access permissions. You will be creating your own context-switching code
based on this idea in Project 2.

6) setjmp only saves (and longjmp only restores) register values. Local variables and
function parameters are stored on the stack. That is why the local variables v1, v2, and
v3 are not changed by the call to longjmp. Under some circumstances, the Visual C++
compiler could choose to place one or more of the local variables into registers. If that
happened then a call to longjmp might restore the value of a variable to its state when
setjmp was called. (Might is used here because the variable will only be restored to its
previous state if it is stored in a register that setjmp saves.)



	Summer 2004
	Setjmp/Longjmp Solutions
	Part A
	Part B



