
CS414 Fall 2004 Homework 5.  Due in class on October 21, 2004 
 
1. In class, we discussed the Banker’s Algorithm for deadlock-free resource allocation.  

Consider a system with two kinds of resources, R1 and R2.  Initially there are 10 units 
of R1 and 2 units of R2.  Process P1 has a maximum need of 3 units of R1 and 2 units 
of R2, denoted NEED(P1)={3,2}; NEED(P2)={7,1}, NEED(P3)={4,0},  
NEED(P4)={7,2}.  At the start, no resources have been allocated.  

a) Assume that the system is presented with the following requests, in the 
following order:   

i. P1 requests [1 unit of R1 and 1 unit of R2].   
ii. P2 requests 2 units of R2.   
iii. P3 requests 1 units of R2.   
iv. P4 requests [5 units of R1 and 2 units of R2].   

Which requests will be granted, and which ones will be delayed?  Note: We’ve 
used the notation  [x units of R1 and y units of R2] when a process requests 
two resources at the same time. The system won’t grant the request unless it 
can grant the desired number of units in one “atomic” action.   

b) After step (a), P1 requests [2 units of R1].  Will P1’s request be granted 
immediately? 

c) Starting in the system state reached after step (b), give one example of a 
request that can be granted immediately and one example of a request that 
would be delayed. 

 
2. You’ve joined the Cornell Robo-Soccer team and are implementing a new program to 

control this year’s robots.  The program is multithreaded, with one thread controlling 
each of the motors (a robot has several), one controlling the kick-bar, etc.  In CS414 
you learned that Linux and Windows support the RR scheduling discipline with 
multi- level feedback queues, and with a quick Google query you found the Linux 
code for the version used in that system.  It looks very clean.  Is this scheduling 
discipline appropriate for controlling threads in a robot?  Explain briefly.  A sentence 
or two will be fine.  

 
3. Machines A and B are connected by a network that supports the Internet protocols.  

You’ve purchased extremely accurate GPS-based clocks, and have begun to measure 
the delay (latency) for messages sent from A to B, or from B to A.    

a) You discover that it takes twice as long for messages to get from A to B as it 
does for them to get from B to A.  List some possible explanations. 

b) You notice that in the A to B direction, the delays vary quite a bit; some 
messages arrive in as little as 1ms but others need as long as 10ms.  What 
could cause such an issue? 

c) Suppose that you have more machines: C, D, E, etc.  Is it possible that 
sometimes it would be faster to send a message from A to C and then from C 
to B (e.g. relayed through C) than to send it directly from A to B?  Why? 

d) The wireless network in your house has a weak signal and reports a lot of 
packet loss, but still connects machine A to B at 11MBits/second.  Yet you 



test download speeds with TCP and find it running at only 100KBits/second 
between A and B.  What could explain this very slow performance? 

 
4. Your close friend Doug “The Bug” Crump is developing a multi-user role playing 

game for the Internet.  In this game, when user A fires a weapon at user B, a message 
is sent from user A’s computer to user B’s system to determine what damage was 
done.  While waiting for a reply, the process on machine A is waiting for action by a 
process on machine B.  Doug is trying to correct a deadlock in which A waits for B, B 
waits for C, etc, and a cycle arises. 

a) Suppose that Doug implements a protocol that “chases wait- for” edges, as 
follows.  If machine A has been waiting for a while, it sends a special message 
to B that checks B’s status.  Initially, this message contains a null “visited” 
list.  On reception, if B isn’t waiting for any other process, B can discard the 
message.  On the other hand, if B is waiting for something to happen at C, B 
appends its node-id (“B”) to the list, and forwards the request to C.  The idea 
is that if a cycle is present, we’ll see it in the list: A, B, C, D, B… and on 
detecting a cycle, the node that notices it can do something to stop waiting.  
But is Doug’s wait-for edge-chasing protocol correct?  Specifically: (i) will it 
break deadlocks, and (ii) could it detect a “false” deadlock, that doesn’t exist, 
and try to “break” that?    

b) At 4:30am, Doug wakes you up to say that his protocol in part (a) had a bug, 
but he thinks he’s fixed it.   He says that instead of assuming that a cycle 
represents a deadlock, he makes the message keep looping.  If a message goes 
around the same loop twice, a deadlock is present (e.g. A, B, C, D, B, C, D, 
B).  Ignoring the question of whether Doug had a bug in the first place, is 
Doug’s new and improved solution bug-free, or does your friend need some 
sleep? 


