
CS414 Fall 2004 Homework 5 – Solution Set 
 
1. In class, we discussed the Banker’s Algorithm for deadlock-free resource allocation.  

Consider a system with two kinds of resources, R1 and R2.  Initially there are 10 units 
of R1 and 2 units of R2.  Process P1 has a maximum need of 3 units of R1 and 2 units 
of R2, denoted NEED(P1)={3,2}; NEED(P2)={7,1}, NEED(P3)={4,0},  
NEED(P4)={7,2}.  At the start, no resources have been allocated.  

a) Assume that the system is presented with the following requests, in the 
following order:   

i. P1 requests [1 unit of R1 and 1 unit of R2].   
ii. P2 requests 2 units of R2.   
iii. P3 requests 1 units of R2.   
iv. P4 requests [5 units of R1 and 2 units of R2].   

Which requests will be granted, and which ones will be delayed?  Note: We’ve 
used the notation  [x units of R1 and y units of R2] when a process requests 
two resources at the same time. The system won’t grant the request unless it 
can grant the desired number of units in one “atomic” action.   

b) After step (a), P1 requests [2 units of R1].  Will P1’s request be granted 
immediately? 

c) Starting in the system state reached after step (b), give one example of a 
request that can be granted immediately and one example of a request that 
would be delayed. 

 
The first request will be granted.  The second request must wait until P1 finishes, since 
there aren’t enough units of R2 available.  The third request is illegal (P3 isn’t permitted 
to exceed its maximum need)..  The fourth request must wait.   
 
Eventually, P1 will finish and then we can grant P2 and P4’s request, but that won’t 
happen until sometime in the future. 

 
2. You’ve joined the Cornell Robo-Soccer team and are implementing a new program to 

control this year’s robots.  The program is multithreaded, with one thread controlling 
each of the motors (a robot has several), one controlling the kick-bar, etc.  In CS414 
you learned that Linux and Windows support the RR scheduling discipline with 
multi- level feedback queues, and with a quick Google query you found the Linux 
code for the version used in that system.  It looks very clean.  Is this scheduling 
discipline appropriate for controlling threads in a robot?  Explain briefly.  A sentence 
or two will be fine.  

 
Probably not.  The actions being described need to be done very rapidly with very low 
real-time delay, so we’ll want to use some form of priority-based preemptive scheduler.  
However, we could potentially get the right behavior by modifying the Linux code just a 
little.  The Linux scheduler would be a good choice for some aspects of what the robot 
needs to do: it probably has various “planner” threads running that do things like 
making sense of data from the vision devices attached to the machine, and for those, 
multi-level RR feedback queues would be fine.  We just need to make sure that the thread 



handling the motors has very high priority so that when it needs to run, it can do so with 
extremely low delay.  And this may mean preempting a long-running task like planning 
the path the robot will follow in order to immediately schedule an action like actuating 
the kick -bar.  
 
3. Machines A and B are connected by a network that supports the Internet protocols.  

You’ve purchased extremely accurate GPS-based clocks, and have begun to measure 
the delay (latency) for messages sent from A to B, or from B to A.    

a) You discover that it takes twice as long for messages to get from A to B as it 
does for them to get from B to A.  List some possible explanations. 

b) You notice that in the A to B direction, the delays vary quite a bit; some 
messages arrive in as little as 1ms but others need as long as 10ms.  What 
could cause such an issue? 

c) Suppose that you have more machines: C, D, E, etc.  Is it possible that 
sometimes it would be faster to send a message from A to C and then from C 
to B (e.g. relayed through C) than to send it directly from A to B?  Why? 

d) The wireless network in your house has a weak signal and reports a lot of 
packet loss, but still connects machine A to B at 11MBits/second.  Yet you 
test download speeds with TCP and find it running at only 100KBits/second 
between A and B.  What could explain this very slow performance? 

 
a) This happens all the time.  Some devices run at different speeds in different directions 
– cable and DSL modems are good examples.  There could be lots of traffic in one 
direction and less in the other.  The routes could be different.  In fact the list of possible 
explanations is almost endless. 
 
b) Delay can vary when the traffic shares part of the communication path with traffic 
from other sources.  For example, maybe there is a router or a link (or many of them) on 
which people are doing downloads of web pages. Messages that happen to end up 
enqueued behind a burst of traffic will be delayed more than messages that happen to be 
sent when the path is temporarily free of competing traffic.  This is like observing that 
sometimes, it takes 10 minutes to commute from home to work, but that there are days 
when traffic is heavy and it takes an hour.   
 
c) Yes, this could happen too.  The Internet is very slow to adapt its routing, so there can 
certainly be periods when a routing through some third-party would be much faster than 
the route the Internet is actually using “directly” between two points.  And in fact this is 
deliberate – the design is supposed to give TCP time to react if a router or link gets 
overloaded.  If routing adapts too quickly, TCP might not have an opportunity to apply 
its flow control and congestion control windowing algorithm.  So routing adapts slowly, 
and a program might well be able to discover some sort of indirect “triangle” route 
through a third party that turns out to be faster than the direct route.  MIT has a system, 
called Resilient Overlay Networks (RONs) that works this way.  
 
d) The wireless connection will drop packets at this low signal strength (just due to noise 
and poor signal quality), but TCP interprets packet loss to mean that there is an 



overloaded link or router in the path and chokes the data rate back.  The sort of 100-fold 
performance loss described here sounds extreme but might easily arise in such a 
situation. 

 
4. Your close friend Doug “The Bug” Crump is developing a multi-user role playing 

game for the Internet.  In this game, when user A fires a weapon at user B, a message 
is sent from user A’s computer to user B’s system to determine what damage was 
done.  While waiting for a reply, the process on machine A is waiting for action by a 
process on machine B.  Doug is trying to correct a deadlock in which A waits for B, B 
waits for C, etc, and a cycle arises. 

a) Suppose that Doug implements a protocol that “chases wait- for” edges, as 
follows.  If machine A has been waiting for a while, it sends a special message 
to B that checks B’s status.  Initially, this message contains a null “visited” 
list.  On reception, if B isn’t waiting for any other process, B can discard the 
message.  On the other hand, if B is waiting for something to happen at C, B 
appends its node-id (“B”) to the list, and forwards the request to C.  The idea 
is that if a cycle is present, we’ll see it in the list: A, B, C, D, B… and on 
detecting a cycle, the node that notices it can do something to stop waiting.  
But is Doug’s wait-for edge-chasing protocol correct?  Specifically: (i) will it 
break deadlocks, and (ii) could it detect a “false” deadlock, that doesn’t exist, 
and try to “break” that?    

b) At 4:30am, Doug wakes you up to say that his protocol in part (a) had a bug, 
but he thinks he’s fixed it.   He says that instead of assuming that a cycle 
represents a deadlock, he makes the message keep looping.  If a message goes 
around the same loop twice, a deadlock is present (e.g. A, B, C, D, B, C, D, 
B).  Ignoring the question of whether Doug had a bug in the first place, is 
Doug’s new and improved solution bug-free, or does your friend need some 
sleep? 

 
a) Doug’s problem was discussed in class on October 26.  In fact a true deadlock would 
be detected by this algorithm.  But for part (ii), a problem is that we don’t have a way to 
do an instantaneous snapshot of the system state.  For example, suppose that we ask B 
what it is doing and B says “I’m waiting for a reply from C”.  Well, the reply from C 
might be in the network while the query is being forwarded from B to C – they could pass 
each other.  Thus we can falsely discover a deadlock – an apparent cycle – when none is 
present in the system. 
 
b) Doug is closer now.  If the same processes are “still” in the same wait state when you 
revisit them, the deadlock must be real.  But his code still sounds buggy: is B “still” 
waiting for a reply from C, or is it possible that B is waiting for a reply from C again?  A 
new wait isn’t the same as a wait that hasn’t ended.  So we need some sort of wait 
counter: when a process waits for another process, it should increment this counter and 
say “I’m doing my 1234th wait, for a reply from C”.  If you revisit that process and it is 
still doing the identical wait, THEN the code has discovered a true cycle and a real 
deadlock has arisen. 


