
1

Sample Synchronization Problems
CS 414/415, Spring 2001
Emin Gün Sirer

1. You have been hired to coordinate people trying to cross a river. There is only a single boat, capable of
holding at most three people. The boat will sink if more than three people board it at a time. Each person
is modeled as a separate thread, executing the function below:

Person(int location)
// location is either 0 or 1;
// 0 = left bank, 1 = right bank of the river
{

ArriveAtBoat(location);
BoardBoatAndCrossRiver(location);
GetOffOfBoat(location);

}
Synchronization is to be done using monitors and condition variables in the two procedures
ArriveAtBoat and GetOffOfBoat. Provide the code for ArriveAtBoat and GetOffOfBoat.
The BoardBoatAndCrossRiver() procedure is not of interest in this problem since it has no role in
synchronization. ArriveAtBoat must not return until it safe for the person to cross the river in the
given direction (it must guarantee that the boat will not sink, and that no one will step off the pier into the
river when the boat is on the opposite bank). GetOffOfBoat is called to indicate that the caller has
finished crossing the river; it can take steps to let other people cross the river.

Boatlocation = 0; // 0 for left bank, 1 for right
Boatcount = 0;
ConditionVariable Boatarrived, boatfull;
Monitor ArriveAtBoat(int location)
{

while(true) {
if(boatlocation == location && boatcount < 3) {

 boatcount++;
 if(boatcount < 3)

 Condition.wait(boatfull);
 Else
 Condition.broadcast(boatfull);
 return;
} else {

 Condition.wait(boatarrived);
}

}
}
Monitor GetOffOfBoat(int location)
{
 --boatcount;
 if(boatcount == 0) {
 // we arrived on the other side, update boat direction
 boatlocation = not location;
 Condition.broadcast(boatarrived);
 }
}

2

Note that this solution may lead to starvation. The readers is encouraged to develop a starvation-free
solution.

2. Ping and pong are two separate threads executing their respective procedures. The code below is
intended to cause them to forever take turns, alternately printing “ping” and “pong” to the screen. The
minithread_stop() and minithread_start () routines operate as they do in your project
implementations: minithread_stop() blocks the calling thread, and minithread_start ()
makes a specific thread runnable if that thread has previously been stopped, otherwise its behavior is
unpredictable.

void ping()
{

while(true) {
minithread_stop();
Printf(“ping is here\n”);
minithread_start(pongthread);

}
}
void pong()
{

while(true) {
Printf(“pong is here\n”);
minithread_start(pingthread);
minithread_stop();

}
}

a. The code shown above exhibits a well-known synchronization flaw. Briefly outline a scenario in which

this code would fail, and the outcome of that scenario.
b. Show how to fix the problem by replacing the minithread_stop and start calls with

semaphore P and V operations.
c. Implement ping and pong correctly using a mutex and condition variables.

Sema sping, spong = sema_init(0);
void ping()
{

while(true) {
P(sping);
Printf(“ping is here\n”);
V(spong);

}
}
void pong()
{

while(true) {
Printf(“pong is here\n”);
V(sping);
P(spong);

}

3

}

Mutex m;
bool turn;
ConditionVariable cond;

void ping() {

mutex.lock(m);
while(true) {

if(turn == true) {
 Printf(“ping is here\n”);
 turn = false;
}
Condition.signal(cond);
Condition.wait(cond, m);

}
}

void pong() {

mutex.lock(m);
while(true) {

if(turn == false) {
 Printf(“pong is here\n”);
 turn = true;
}
Condition.signal(cond);
Condition.wait(cond, m);

}
}

3. You are designing a data structure for efficient dictionary lookup in a multithreaded application. The
design uses a hash table that consists of an array of pointers each corresponding to a hash bin. The array
has 1001 elements, and a hash function takes an item to be searched and computes an entry between 0 and
1000. The pointer at the computed entry is either null, in which case the item is not found, or it points to a
doubly linked list of items that you would search sequentially to see if any of them matches the item you
are searching for. There are three functions defined on the hash table: Insertion (if an item is not there
already), Lookup (to see if an item is there), and deletion (to remove an item from the table). Considering
the need for synchronization, would you:
 1.Use a mutex over the entire table?
 2.Use a mutex over each hash bin?
 3.Use a mutex over each hash bin and a mutex over each element in the doubly linked list?
Justify your answer.

Answer: A mutex over the entire table is undesirable since it would unnecessarily restrict concurrency.
Such a design would only permit a single insert, lookup or delete operation to be outstanding at any given
time, even if they are to different hash bins. A mutex over each element in the doubly linked list would
permit the greatest concurrency, but a correct, deadlock-free implementation has to ensure that all
elements involved in a delete or insert operation, namely, up to three elements for an delete, or two
elements and the hash bin for inserts/some deletes, are acquired in a well-defined order. A mutex over
each hash bin is a compromise between these two solutions – it permits more concurrency than solution 1,
and is easier to implement correctly than solution 2.

4

4. A car is manufactured at each stop on a conveyor belt in a car factory. A car is constructed from the
following parts - chassis, tires, seats, engine (assume this includes everything under the hood and the
steering wheel), the top cover, and painting. Thus there are 6 tasks in manufacturing a car. However, tires,
seats or the engine cannot be added until the chassis is placed on the belt. The car top cannot be added
until tires, seats and the engine are put in. Finally, the car cannot be painted until the top is put on.

A stop on the conveyor belt in your car company has four technicians assigned to it - Abe, Bob, Charlie,
and Dave. Abe is skilled at adding tires and painting, Bob can only put the chassis on the belt, Charlie
only knows how to attach the seats, and Dave knows how to add the engine as well as how to add the top.

Write pseudocode for Abe, Bob, Charlie and Dave to be able to work on the car, without violating the
task order outlined above. You can use semaphores, mutexes or monitors in your solution.

5. Write a simulator for Dragon Day, where each architect and engineer is modeled as a separate thread
executing their respective functions.

void initsimulator() {
 // TODO: initialize any synch variables
}
void architecture_student() {
 while(true) {
 // TODO: Architect enters equad
 EnterEngineeringQuad();

// TODO: an architect should do nothing until s/he
// observes a snowball thrown by an engineer
WaitUntilSnowballIsThrown()

 // run out of the Equad, but only after seeing a snowball

// thrown by an engineer
 ExitEngineeringQuad();

}
}
void engineer(){
 while(true) {
 // TODO: an engineer should wait until there

// are at least two architects who are not
// running around.
WaitUntilThereAreTwoArchitects();

 // throw two snowballs

 ThrowSnowball(); // first one
ThrowSnowball(); // second one

}
}
Your task is to write EnterEngineeringQuad, WaitUntilSnowballIsThrown,
WaitUntilThereAreTwoArchitects, and ThrowSnowball().

Answer:
EnterEngineeringQuad() { V(archies); }
WaitUntilSnowballIsThrown { P(snowballs); }
WaitUntilThereAreTwoArchitects() { P(archies); P(archies); }
ThrowSnowball() { V(snowballs); }

5

6. You have been hired by Large-Concurrent-Systems-R-Us, Inc. to review their code. Below is their
atomic_swap procedure. It is intended to work as follows:

Atomic_swap should take two queues as arguments, dequeue an item from each, and enqueue each item
onto the opposite queue. If either queue is empty, the swap should fail and the queues should be left as
they were before the swap was attempted. The swap must appear to occur atomically – an external thread
should not be able to observe that an item has been removed from one queue but not pushed onto the
other one. In addition, the implementation must be concurrent – it must allow multiple swaps between
unrelated queues to happen in parallel. Finally, the system should never deadlock.

Note if the implementation below is correct. If not, explain why (there may be more than one reason) and
rewrite the code so it works correctly. Assume that you have access to enqueue and dequeue operations
on queues with the signatures given in the code. You may assume that q1 and q2 never refer to the same
queue. You may add additional fields to stack if you document what they are.

extern Item *dequeue(Queue *); // pops an item from a stack
extern void enqueue(Queue *, Item *); // pushes an item onto a stack

void atomic_swap(Queue *q1, Queue *q2) {
 Item *item1;

Item *item2; // items being transferred

 P(q1->lock);
 item1 = pop(q1);
 if(item1 != NULL) {

P(q2->lock);
item2 = pop(q2);
if(item2 != NULL) {

 push(q2, item1);
 push(q1, item2);
 V(q2->lock);
 V(q1->lock);
 }
 }
}

Answer:
The code has three problems: it can deadlock, it fails to restore q1, and it has unmatched P’s and V’s.

void atomic_swap(Queue *q1, Queue *q2) {
 Item *item1;

Item *item2; // items being transferred

 if(q1->id > q2->id) {
 // impose ordering on P operations
 Tmp = q1;
 q1 = q2;
 q2 = tmp;
 }
 P(q1->lock);
 P(q2->lock);

item1 = dequeue(q1);
 if(item1 != NULL) {

item2 = dequeue(q2);
if(item2 != NULL) {

 enqueue(q2, item1);

6

 enqueue (q1, item2);
 } else {
 enqueue (q1, item1);
 }
 V(q2->lock);
 V(q1->lock);
}

7. Implement a synchronization barrier. Synchronization barriers are a common paradigm in many
parallel applications. A barrier is supposed to block the calling thread until all N threads have reached the
barrier. (Parallel apps often divide up the work, e.g. matrix operations or graphical rendering, among N
processes, each of which compute independently, reach the barrier, exchange results, and then work on
the next phase of computation).

Answer:
Barriers are simple to implement with monitors and condition variables:
Int count = 0;
monitor void barrier(int processid) {
 If(++count != N) {
 Condition.Wait(EveryoneHasReachedBarrier);
 } else {
 Condition.Broadcase(EveryoneHasReachedBarrier);
 }
}

Naïve attempts with semaphores are likely to contain errors, e.g.:
Monitor void barrier(int processid) {
 P(mutex);

If(++count != N) {
 V(mutex);

 P(EveryoneHasReachedBarrier);
 } else {
 V(mutex);
 For(I = 0; I < N; ++I)
 V(EveryoneHasReachedBarrier);
 }
}

8. Implement a deadlock-free solution to the dining philosophers problem.

9. A system has four processes and five allocatable resources. The current allocation and maximum needs
are as follows:

Process Allocated Maximum Available
A 1 0 2 1 1 1 1 2 1 3 0 0 x 1 1
B 2 0 1 1 0 2 2 2 1 0
C 1 1 0 1 0 2 1 3 1 0
D 1 1 1 1 0 1 1 2 2 1

What is the minimum value of x for which this is a safe state ?

10. Your program has the following structure: one thread sits in an event-processing loop, waiting for
events to be added to a queue. If the queue is empty, it should block until it is non-empty; if it is non-
empty, it should dequeue all the events on it and process them, then continue. Other threads in the
program add events to the queue at arbitrary times. What synchronization is necessary to ensure a correct
system?

7

Queue eventq;
void eventloop(void) {
 //TODO: synchronize
}
void addevent(Event *e) {

//TODO: synchronize
 enqueue(eventq, e);
}

11. A certain bar is a well-known hangout for detectives. If a detective comes to the bar and there are no
clients at the bar, the detective talks to the bartender. If one or more clients are present, the detective
approaches the client who arrived earliest, and they leave the bar. If a client arrives and there are no
detectives at the bar, the client orders a drink and waits. If there are one or more detectives, the client and
the detective who arrived earliest leave the bar. What synchronization is necessary to ensure a correct
system?

void detective(void) {
 //TODO: synchronize
}
void client(void) {

//TODO: synchronize
}

12. The same setup, except that now when a detective arrives, if there are clients in the bar, the detective
leaves with all of them. A client arriving when there are multiple detectives still leaves with only one.

13. A collection of threads are sending data over a network. A send operation uses a varying number of
packet buffers, with no limit to the maximum number. There are N buffers in the system, each of which is
either free or in use. If a thread executes a send that requires more buffers than there are free, then it
blocks, otherwise it marks them as used and returns. A network thread is responsible for sending buffers
and freeing them, which is not a very fast operation (it’s a slow network). As buffers become free, they
will be allocated to blocked threads first, so that eventually they will meet their requirement and become
unblocked. What synchronization primitives are necessary to ensure correctness, and how should they be
used?

void send(int numBlocksNeeded) {
 //TODO: synchronize
}
void packetsent(int numBlocksPacketFreed) {

//TODO: synchronize
}

14. Day Hall is considering a new policy that will put an end to its long-standing practice of gender-based
segregation in bathrooms, while upholding the age-old tradition that only people of the same gender can
use a bathroom at the same time. The new rules postulate that a bathroom can be in three states: empty,
women present, men present. When women are present, other women may enter but no men, and vice
versa. An empty bathroom may be used by a person of either gender, but becomes dedicated to that
gender until the last person of that gender leaves. You can assume that bathrooms have infinite capacity,
i.e. everyone who wants to enter can do so as long as the bathroom is empty or occupied by people of
their own gender.

8

Write the following procedures: woman_wants_to_enter, man_wants_to_enter,
woman_leaves and void man_leaves. You can call on the helper function “int get_my_id()”
to get a unique identifier for that person, if necessary.

