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ABSTRACT

The design and implementation of a shared libraries facility for Sun’s implementa-
tion of the UNIX† operating system (SunOS) is described. Shared libraries extend the
resource utilitization benefits obtained from sharing code between processes running the
same program to processes running different programs by sharing the libraries common
to them.

In this design, shared libraries are viewed as the result of the application of several
more basic system mechanisms, specifically

� kernel-supplied facilities for file-mapping and ‘‘copy-on-write’’ sharing;
� a revised link editor supporting dynamic binding; and
� compiler and assembler changes to generate position-independent code.

The use of these mechanisms is transparent to applications code and build pro-
cedures, and also to library source code written in higher-level languages. Details of the
use and operation of the mechanism are provided, together with the policies by which
they are applied to create a system with shared libraries. Early experiences and future
plans are summarized.

1. Introduction

The UNIX operating system has long achieved efficiencies in memory utilization through sharing a
single physical copy of the text (code) of a given program among all processes that execute it. However, a
program text usually contains copies of routines from one or more libraries, and occasionally a program
consists mostly of library routines. Considering that virtually every program makes use of routines such as
printf(3), then at any given time there are as many copies of these routines competing for system resources
as there are different active programs.

In an environment containing single-user systems, such as workstations, the likelihood of achieving
much benefit from sharing multiple copies of entire programs seems small. As the number of programs in
a system increases (a guaranteed attribute of each new system release), so does the waste in file storage
resources containing yet more copies of common library routines. Thus, there is increasing motivation to
extend the benefits of sharing to processes executing different programs, by sharing the libraries common
to them.

This paper describes the design and implementation of a shared libraries facility for Sun’s implemen-
tation of the UNIX operating system, SunOS. We discuss our goals for such a facility, our approach to its
design and implementation, and our plans for its use. We also discuss our early experiences, and our plans
�����������������������������������

† UNIX is a trademark of Bell Laboratories.
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for the future.

2. Goals

Most of our goals were driven by a desire to have a facility that was as simple to use and evolve as
possible. We also wanted to provide mechanisms that were as flexible as possible, so that the work we per-
formed could be used to support other activities and projects. Providing mechanisms with great apparent
simplicity would also help motivate their use. To that end, we arrived at the following specific goals:

� Minimize kernel support. Clearly, any support we put in the kernel would be very inflexible,
and further complicate an already complex environment. We considered an ideal situation to
be one involving no kernel changes.

� Do not require shared libraries. Although we might make the use of shared libraries the
default system behavior, we felt we could not require their use or otherwise build fundamental
assumptions requiring them into other system components.

� Minimize new burdens. The introduction of any new facility creates the potential for new
burdens to be imposed upon its users. To minimize these, we decided how shared libraries
should impact various groups:

° Application programmers: The use of shared libraries must be transparent to applica-
tion source code, program build procedures, and the use of standard utilities such as
debuggers. It was also considered desirable to be able to use existing object files.

° Library programmers: That a body of library code is to be built as a shared library
must also be transparent to its source code. However, it need not be transparent to the
procedures used to build the library, and such a goal appeared contradictory in any case
− someone has to decide that a shared library will be built. The goal to not change
library source was a direct consequence of not having the resources to change the large
amount of library code already in existence. Even source alterations such as those used
with System V shared libraries [ARNO 86] appeared more than we wished to do.

° Administrative: There should be no requirement to administer and coordinate the allo-
cation of address space. Libraries should be able to evolve and be updated without
requiring rebuilding of the programs that used them as long as their interfaces are com-
patible, and mechanisms would have to be available to handle interface changes.

� Improve the environment. Where possible, we wanted our changes to provide functional
benefits beyond the resource utilization ones we expected. This included having a great deal
of flexibility in easily testing updates to libraries.

� Performance. Shared libraries represents a classic time vs. space trade-off opportunity. We
were deferring the work of incorporating library code into an address space in order to save
both secondary and primary storage space. Thus, we expected to pay a time penalty in pro-
grams using shared libraries. However, the expectation was that if sharing of library code
really occurred, then the I/O (real) time required to bring in a program and get it executing
would be greatly reduced. As long as the CPU time required to merge the program and its
libraries did not exceed the I/O time we saved, the apparent performance would be the same or
potentially even better. This approach fails if sharing does not occur, or if the system is CPU
saturated already.

Even though a moderate cut in I/O time offers a large window for computation, we felt that an
attempt to equal the performance of current systems was unrealistic, and instead set two per-
formance goals permitting a limited degradation in CPU performance for programs that used
shared libraries. These goals were:

° ≤ 10% for programs not dominated by start-up costs; and

° ≤ 50% for programs that were dominated by start-up costs.

A program was considered to be dominated by start-up costs if it took less than half a second
to execute on a Sun-3/75.
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3. Approach

Given our goals for flexibility, the most productive approach was not to build a mechanism specific
to shared libraries. Rather, by abstracting the general properties we required of shared libraries and provid-
ing mechanisms to deliver those properties directly, we hoped to achieve the sought-for benefits and flexi-
bility to address the needs of other projects. The mechanisms we chose were:

� a high degree of memory sharing of general objects (e.g., files) at a fine level of granularity
(pages);

� a revised system link editor (ld) that supports dynamic loading and binding; and
� compiler changes to generate position-independent code (PIC) that need not be relocated for

use in different address space arrangements and thus may be directly shared.

3.1. Memory Sharing

The mechanism that provides our memory sharing is a new Virtual Memory (VM) system for
SunOS. Although more completely described elsewhere [GING 87], the principal features of the new system
include:

� file mapping as its principal mechanism, accessed by programs through the mmap(2) system
call;

� sharing at the granularity of a file page; and
� a per-page copy-on-write facility to allow run-time modification of a shared object without

affecting other users of the object.

The new VM system uses these features internally, so that the act of exec’ing a program is reduced to
the establishment of copy-on-write mappings to the file containing the program. A ‘‘shared library’’ is
added to the address space in exactly the same way, using the general file mapping mechanism. The use of
files in this way originated with MULTICS [ORGA 72], and the use of file page mapping to incorporate
library support at execution time was established with TENEX [MURP 72] and its evolution as Digital
Equipment’s TOPS-20. Comparable approaches have been applied with UNIX-based systems as described
in [SZNY 86] and [DOWN 84].

3.2. New ld

The changes to ld reflect an observation that the activities that must occur to execute a program with
shared libraries are no different than those to execute one without them, at least conceptually. All that has
really changed is when, and over what scope of material, those activities occur. Conceptually, ld has been
turned into a more general facility available at various times in the life of a program (in perhaps different
guises) to perform its link editing function.

The old ld built all programs statically. Executable (a.out) files contained complete programs,
including copies of necessary library routines. Executables were created by link editing the program in
(usually) a single batch operation using ld. ld would refuse to build an incomplete executable file.

The new ld will build ‘‘incomplete’’ a.out files, deferring the incorporation of certain object files
until some later time (generally program execution). These deferred link editing operations employ the
system’s memory management facilities to map to and thus share these objects directly. A ‘‘shared
library’’ is simply the code and data constituting a library built as such a shared object (.so) file. A .so is
simply one of these ‘‘incomplete’’ a.out files that lacks an entry point. It should be noted that a .so file can
be any object, a ‘‘library’’ is simply one of many possible semantic uses for it.

As previously noted, dynamic link editing is still essentially the same operation as static link editing,
but occurring at a different time. A link editing operation effects some change to either the material being
added, or that to which it is added, or more likely both. However, when an object is changed as the result
of such processing, it can no longer be shared with other users of the object, as the change is unlikely to be
useful to any program other than the one in which it occurs. Such changes are accommodated automati-
cally by the VM system, using its copy-on-write facilities to create per-process private copies of the pages
of the file the process attempts to modify. Thus, the extent of the changes a link edit performs affects the
degree to which sharing can occur.
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Although a dynamic link edit operation may impact the degree to which sharing can occur in a sys-
tem, it does not affect the correctness of the resulting program. A strong characteristic of our approach is
this separation between ‘‘right and wrong’’ vs. ‘‘good and bad’’. Almost any legitimate combination of
objects can be link edited into a program at any time (e.g., there are very few ‘‘wrong’’ combinations), but
those that maximize sharing will be ‘‘best’’.

3.3. PIC

In the previous section it was observed that code that minimizes the amount of dynamic link editing
promotes sharing and is thus ‘‘best’’. To increase the prospects for having the ‘‘best’’ code, we changed
our C compiler to optionally generate position-independent code (PIC). PIC needs link editing only to
relocate references to objects external to the body of code that has been built as PIC, and is thus more shar-
able. Again, it is not necessary to have PIC, just better.

However, PIC programs will be slower than non-PIC ones. To localize the link editing for references
to global objects, the code refers to such objects indirectly through linkage tables. The specific amount of
degradation is a function of the number of dynamic references to global objects.

4. Mechanisms

The previous section provided an overview of the approach we have employed, and briefly identified
the mechanisms we would use. With this background, we describe the mechanisms in greater detail.

4.1. Compiler Changes

The C compiler has been altered to take a new option (-pic) that causes it to generate PIC. When
-pic is specified, the code generated by the compiler changes in the following ways:

� Each function prologue is extended to include the initialization of a register that is used as the
base address of a linkage table to global objects, this table is called the global offset table
(GOT). For the Motorola 680x0 used in Sun’s workstations, this code is:

movl #__GLOBAL_OFFSET_TABLE,a5 | Get offset to GOT
lea pc@(0,a5:L),a5 | Get absolute address

which computes the absolute address of the GOT associated with this function based on a PC-
relative offset from the function prologue to the table. The register a5 is unavailable for the
life of the function, and is one of those that the compiler expects called functions to preserve.

� Each reference to a global data object is generated as a dereference of a pointer in the GOT.
For example, a reference to the external integer errno in C is generated as:

movl a5@(_errno:w),a0 | Get address of _errno
movl a0@,d0 | Get contents

Currently, the code generation scheme for static data objects is identical to that used for glo-
bals. This represents an area for future optimization work.

� Each function call is generated as an assembler pseudo-operation including a ‘‘free register’’,
for example:

jbsr _foo,a0 | _foo()

for an expression involving a call to the function foo. The assembler will, if _foo is
undefined to it, expand the pseudo-operation to an instruction sequence that involves loading a
PC-relative reference to an entry in a procedure linkage table into the ‘‘free register’’, and
then issuing a subroutine call instruction involving the PC in the calculation of the effective
address.

The code sequences generated for the 680x0 assume that the linkage tables are of a limited size,
specifically no larger than 64K bytes. In the event the tables require a larger size, the compiler can
be coerced into generating more clumsy code sequences permitting linkage tables to a full 32 bits in
size (by expressing -pic as -PIC). However, we have yet to find a program that requires the use of
this option.
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4.2. Assembler Changes

The code generated by the compiler with the -pic option requires support from the assembler. The
support required is that the assembler generate some new relocation information for certain constructs, and
a change in interpretation for some syntactic forms. This support is enabled by the assembler flag -k, and
is generated automatically by the C compiler driver when invoking the assembler for a compilation that
contained the -pic or -PIC options.

When assembling a module with the -k flag enabled, the assembler:
� interprets a relocatable expression in an operand involving an ‘‘immediate’’ addressing mode

as a PC-relative reference to any symbol involved and generates a PC-relative relocation
record for the expression;

� interprets symbolic relocatable expressions in operands involving base-register relative
addressing as a reference to the GOT entry for the symbol and generates a relocation record
indicating such; and

� generates a ‘‘procedure call’’ relocation type for all jbsr pseudo-operations it assembles.

It should be noted that although examples have been provided using an assembler for the 680x0 processor
employed in Sun workstations, the requirements for these special relocation types are architecture indepen-
dent.

4.3. Link Editor changes

The most extensive changes have been performed to the link editor, ld. These not only include
changes to the batch form of the link editor (embodied as ld), but also the creation of an execution-time
version (ld.so).

4.3.1. Batch link editor (ld)

The batch link editor, ld, combines a variety of module types to produce an a.out file. How that
a.out file can be used is very much dependent on what ld can determine to do with the information it has
been fed. Whereas the previous version of ld had to determine everything about a program, the new ver-
sion simply stops working when it runs out of information on the assumption that later events will provide
more.

ld’s output can be one of two basic types, including:
� a ‘‘simple object’’ (.o file), produced by simply combining other .o’s into a single, larger one

(-r flag);
� an ‘‘executable’’ (a.out), which is is either a ‘‘program’’ (has an entry point) or a shared

object (.so) (does not have an entry point).

The production of a .o file through the use of the -r flag is a special use of ld that, while useful, is not
relevant to the issues being discussed and will not be considered further.

Exactly what gets produced depends on what ld was fed in the way of input files and command line
options. ld will process the following kinds of input files:

� simple object files, .o’s;
� archives, .a’s, conglomerates of simple objects and also referred to as libraries; and
� shared objects, .so’s, also known as dynamically bound executables and sometimes called

shared libraries.

Each .o file is simply concatenated to previous .o files in the order it is encountered. In this respect,
ld is unchanged except that it handles the new relocation operations required by code the assembler gen-
erated as PIC.

Each .a is searched exactly once as it is encountered − only those entries matching an unresolved
external reference are extracted and concatenated. Again, this is exactly as ld has always done, with the
addition of PIC handling.
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Any .so encountered is (usually) searched for symbol definitions and references, but does not contri-
bute any material to be concatenated except under certain conditions involving other options (described
further below). However, their occurrence in the command line is stored in the resulting a.out file and util-
ized by the execution-time ld.so to effect dynamic loading and binding.

ld’s -l flag is used to specify a short name for an object file to be used as a library. The full name of
the object file is derived by adding the prefix lib and a suffix of either .a or .so (for archive or shared
library, respectively). The specific suffix applied depends on the binding ‘‘mode’’ ld is operating in at the
time the -l flag is processed. ld’s binding ‘‘mode’’ is specified by a new flag, -B that takes several keyword
arguments:

dynamic Allow dynamic binding, do not resolve symbolic references, and allow creation of
execution-time symbol and relocation information. This is the default setting.

static Force static binding, implied by options that generate non-sharable executable for-
mats.

-Bdynamic and -Bstatic may be specified multiple times and may be used to toggle each other on
and off. Like -l, their influence is dependent upon their location. When -Bdynamic is in effect, any -l
searches may be satisfied by the first occurrence of either form of library (.so or .a), but if both are encoun-
tered the .so form is preferred. Since -Bdynamic is the default setting, the use of shared libraries in the
construction of a program thus ‘‘falls out’’ from simply installing the .so that represents the shared library
in the library search path used by ld.

If -Bstatic is in effect, however, ld will refuse to use any .so forms of libraries it encounters and con-
tinue searching for the .a form. Further, an explicit request to load a .so file is treated as an error.

After ld has processed all its input files and command line options, the form of the output it produces
is based on the information it has been able to discern. ld first tries to reduce all symbolic references to
relative numerical offsets within the executable it is building. To perform this ‘‘symbolic reduction’’, ld
must know that either

� all information relating to the program has been provided, in particular, no .so will be added at
execution time; and/or

� this program has an entry point and symbolic reduction can be performed for all symbols hav-
ing definitions existing in the material it has been provided.

It should be noted that uninitialized ‘‘common’’ areas (essentially all uninitialized C globals) are allocated
by the link editor after it has collected all references. In particular, this allocation can not occur in a pro-
gram that still requires the addition of information contained in a .so file, as the missing information may
affect the allocation process. Initialized ‘‘commons’’, however, are allocated in the executable in which
their definition appears.

After ld has performed all the symbolic reductions it can, it attempts to transform all relative refer-
ences to absolute addresses. ld is able to do this ‘‘relative reduction’’ only if it has been provided some
absolute address, either implicitly through the specification of an entry point, or explicitly through other ld
options. If, after performing all reductions it can, there are no further relocations or definitions to perform,
then ld has produced a completely linked executable − essentially its old behavior.

However, if any reductions remain, then the executable being produced will require further link edit-
ing at execution time in order to be useable. In the data spaces of such executables, ld creates an instance
of a link_dynamic structure that has the label __DYNAMIC. The link_dynamic structure has the
form:

struct link_dynamic {
int ld_version; /* Version # */
struct link_map *ld_loaded; /* Loaded objects */
long ld_need; /* Needed objects */
long ld_got; /* Global offset table */
long ld_plt; /* Procedure linkage table */
long ld_rel; /* Relocation table */
long ld_hash; /* Symbol hash table */
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long ld_stab; /* Symbol table itself */
long (*ld_stab_hash)(); /* Hash function */
long ld_buckets; /* Number of hash buckets */
long ld_symbols; /* Symbol strings */
long ld_text; /* Size of text area */

};

This data structure is used by ld.so to obtain .so’s on which this executable depends, and to find the sym-
bolic and relative reduction operations that remain to be performed. The link_dynamic structure con-
tains elements that allow evolution of the interfaces to occur without invalidating existing programs. These
include the ld_version element, and the incorporation of the hash function for the execution-time sym-
bol table as part of the executable.

4.3.2. Relocation of PIC

As described previously, code generated as PIC contains several new relocation record entries: PC
relative, references to entries in a global offset table (GOT), and references to entries in a procedure link-
age table (PLT).

PC relative relocations are easily handled by ld: the value replacing the relocation is simply the offset
between the location reference and definition of its target.

GOT and PLT entry references are more complex, however. Both of these data structures are allo-
cated by ld as part of creating an executable comprised of at least one PIC module, that is, a module con-
taining either GOT or PLT or both relocation forms. ld is responsible for assigning entries in each of these
tables for each unique symbol referenced in either a GOT or PLT reference, and creating a new relocation
entry for the table entry. The resulting relocations are then processed just like any other handled by ld, by
first attempting symbolic and then relative reductions. The table entries themselves are (at least conceptu-
ally) indirect pointers to the targets of global references.

4.3.3. crt0

Every main program produced by the standard languages is linked with a program prologue module,
crt0. This module actually contains the program’s entry point, and performs various initializations of the
environment prior to calling the program’s main function or logical starting point. crt0 was modified to
contain a reference to the symbol __DYNAMIC. As described above, when ld builds an executable requir-
ing execution-time link editing, it defines this symbol as the address of a data structure containing informa-
tion needed for execution-time link editing operations. If the structure is not needed, any reference to the
symbol __DYNAMIC is relocated to zero.

Thus, at program start-up, crt0 tests to see whether or not the program being executed requires
further link editing. If not, crt0 simply proceeds with the execution of the program as it always has − no
further processing is involved. However, if __DYNAMIC is defined, crt0 opens the file /lib/ld.so
and requests the system to map it into the program’s address space via the mmap system call. It then calls
ld.so, passing as an argument the address of its program’s __DYNAMIC structure. crt0 assumes that
ld.so’s entry point is the first location in its text. When the call to ld.so returns, the link editing operations
required to begin the program’s execution have been completed.

4.3.4. ld.so

After crt0 transfers control to ld.so, ld.so executes a short bootstrap routine that performs any reloca-
tions ld.so itself requires. The process of building ld.so, described further below, results in only very sim-
ple forms of relocation that can be easily handled by this bootstrap routine. ld.so then processes the infor-
mation contained in the __DYNAMIC structure of the program that called it, in order to perform the link
editing required to start execution of the program.

ld.so’s first action is to examine the ld_need entry of the program’s __DYNAMIC structure. This
entry contains an offset relative to the __DYNAMIC structure of an array of link_object structures.
Each element of the array has the structure:
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struct link_object {
char *lo_name; /* Name of object */
int lo_library : 1; /* Library search */
short lo_major; /* Major version */
short lo_minor; /* Minor version */

};

and identifies a .so that must be added to the program’s address space and link edited. The identification is
the name specified on the ld command line used to build the program, and includes a bit indicating whether
the object was named explicitly or via an ld -l option. Some version control information is also recorded,
however a discussion of the use of this information is deferred.

For each entry in the ld_need array, ld.so looks up the file identified and maps it into the process’s
address space. The location in the address space to which the .so is mapped is left to the system to decide,
and a given .so may reside at different locations in the address spaces of different processes. Failure to find
a needed object is a fatal error and results in the program’s termination. At the end of the initial program’s
ld_need array, ld.so examines the __DYNAMIC structure of the first .so file it mapped in. It processes
that .so’s ld_need array, and proceeds likewise through all the loaded .so’s. Any references to already
processed .so files are ignored.

For each .so that is loaded, ld.so builds a link_map data structure having the form:

struct link_map {
caddr_t lm_addr; /* Address mapped */
char *lm_name; /* Absolute pathname */
struct link_map *lm_next; /* Next .so */

};

Each such structure is placed on a singly linked list in the order it was loaded. The head of the list is rooted
in the ld_loaded member of the initial program’s __DYNAMIC structure. This ordering of the loaded
.so’s is used to establish the search order for undefined symbol look-ups.

After all of the modules comprising the complete program have been placed in the address space,
ld.so attempts to complete the link editing operations begun by ld. Specifically, it attempts to perform first
symbolic and then relative reductions on all the references outside of procedure linkage tables left in the
program. In particular, this includes the allocation of any uninitialized commons (since all information
regarding their use is finally present). If all non-procedural references can not be reduced to absolute
addresses, then it is because a definition for a given symbol is not available, in which case ld.so terminates
the program with an ‘‘undefined symbol’’ diagnostic.

All non-reduced references in any PLT’s in the loaded executables are not processed during program
startup. Rather, all such references are initialized to cause the initial calls to the procedures they reference
to result in the transfer of control to ld.so. Upon receiving control from such a reference, ld.so will reduce
the original reference to the appropriate absolute address and modify the referencing PLT entry to direct
future calls directly to the targeted procedure. Deferring the binding of procedure entry points until their
first reference saves performing perhaps thousands of unnecessary bindings to entry points programs may
never call.

4.3.5. Version Management of .so’s

The previous discussion of the handling of .so files in the course of processing an ld -l option was
simplified with respect to .so version control. One of the goals of our project was to accommodate the evo-
lution of shared libraries: to permit them to be updated without impacting the programs that used them so
long as the interfaces remained compatible.

The .so files used as shared libraries actually employ a more complex name than has been described
so far, involving a suffix that describes the version of the library contained in the file. Thus, interface ver-
sion ‘‘2’’ of the C library, in its third compatible revision, would be placed in a .so having the name
libc.so.2.3. The suffix may actually be an arbitrary string of numbers in Dewey-decimal format,
although only the first two components are significant to the operation of the link editors at this time.
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The first component is called the library’s ‘‘major version’’ number, and the second component its
‘‘minor version’’ number. When ld records a .so used as a library, it also records these two numbers in the
database used by ld.so at execution time. When ld.so finally searches for libraries, it uses these numbers to
decide which of multiple versions of a given library is ‘‘best’’, or whether any of the available versions are
acceptable. The rules it follows are:

� Major Versions Identical: the major version used at execution time must exactly match the
version found at ld-time. Failure to find an instance of the library with a matching major ver-
sion will cause a diagnostic to be issued and the program’s execution terminated.

� Highest Minor Version: in the presence of multiple instances of libraries that match the
desired major version, ld.so will use the highest minor version it finds. However, if the highest
minor version found at execution time is less than the version found at ld-time, a warning diag-
nostic will be issued, although execution will continue.

The semantics of version numbers are such that major version numbers should be changed whenever
interfaces are changed. Minor versions should be changed to reflect compatible updates to libraries, and
programs will silently prefer the highest compatible version they can obtain. If minor version numbers
drop, then although the interfaces should remain compatible, it is possible that certain bug fixes or compati-
ble enhancements that the program builder wanted are unavailable: hence the warning diagnostic.

Although the mechanisms for supporting version evolution of shared libraries have been provided,
we have not yet provided any tools to automate their use. As before, the detection of incompatibilities
remains the responsibility of the library developer.

4.3.6. Link Editor Environment Variables

ld interprets the values of the environment variables LD_LIBRARY_PATH and LD_OPTIONS.

LD_LIBRARY_PATH augments ld’s built-in rules for directories to be used when searching for
libraries specified with the -l option. If defined, the value of LD_LIBRARY_PATH should be a colon-
separated list of directory names (as for the PATH variable of sh). The list specified by
LD_LIBRARY_PATH is prepended to the list of ld’s built-in rules, and follows any further directories
specified on the command line with -L options.

LD_OPTIONS specifies a default set of options to ld. LD_OPTIONS is interpreted by ld just as
though its value had been placed on the command line immediately following ld’s invocation, as in:

% ld $LD_OPTIONS ... other ld arguments ...

ld.so also interprets the LD_LIBRARY_PATH environment variable, and may be used to substitute
test versions of libraries in their own environments at execution time.

4.3.7. Considerations of Dynamically Linked Programs

Beyond providing a basis for improved sharing of system resources, the ability to defer the binding
of library and other code offers a number of other potential advantages in terms of increased flexibility for
maintenance and development. However, the environment they create is also inherently more complex,
something that the policies governing the application of the mechanisms must address. Some aspects of
this more complex environment include:

� Multiple files: a dynamically bound program consists not only of the executable file that is the
output of ld, but also of the files referenced during execution. Moving a dynamically bound
program may also involve moving a number of other files as well. Moving (or deleting) a file
on which a dynamically bound program depends may prevent that program from functioning.

� Ubiquitous link editor: the previous behavior of ld was to produce only a fully linked execut-
able. Link editing issues could be forgotten or ignored once the executable had been success-
fully produced. However, deferring some of the link editing means (potentially) deferring
some of the errors that could occur. With the new facilities, it is possible for a running pro-
gram to produce a link editor error.

Consider the following example: a programmer misspelling in the use of the function call
printf results instead in a reference to ‘‘pintf’’. During testing of the code in which the

9



misspelling occurs, no path to the ‘‘pintf’’ reference is ever exercised. However, a later pro-
duction user does exercise the path. The (no doubt surprised) user will find the program ter-
minated with the message: ‘‘_pintf: undefined’’.

To deal with such problems, ld has been provided with an assertion-checking facility that
(among other things) can be used to determine if a given program will encounter undefined
symbols during execution if used with the dynamic objects now on the system. Later erroneous
changes to such dynamic objects might still create this problem, however. Program builders
wishing to isolate themselves from such problems should simply link their programs statically.

� Semantic Differences: there are some semantic differences between the dynamic and static
binding algorithms. The differences are not expected to manifest themselves as problems with
existing programs, unless such programs engaged in questionable practices in their use of
library search ordering. The major semantic difference that can create a problem involves old
programs built from several components, where several of those components suddenly become
dynamically loadable and others remain static.

Consider the ld command:

% ld -o x ... <dc> <sc>

The executable x consists of several objects including a dynamic component (<dc>) and a
static component (<sc>). <dc> was, prior to the introduction of the new mechanisms, an
unordered archive file. <dc> and <sc> both contain definitions for the symbol bar. In
addition, <dc> contains a reference to bar. If, in <dc>’s prior existence as an unordered
static archive, the definition of bar preceded its reference, the ld operations to build x may
have satisfied <dc>’s reference with the definition from <sc>. However, in its dynamic
form, <dc>’s own definition will be used. This is a consequence of the fact that at execution
time, all searches for a symbol definition start with the main program and then all .so’s in load
order. This behavior preserves the ability to interpose on library entry points.

4.4. Debuggers

The debuggers used in the SunOS environment, adb and dbx, have been modified to deal with the
dynamic linking environment provided by the new ld. In particular, they understand that symbol
definitions may appear after a program starts executing. Such dynamically added symbols are found by
noting the creation of the link_map structure list in the initial program’s __DYNAMIC structure, and
adding the symbols for the .so’s that have been added to the debugger’s database of symbols.

Despite our goal for transparency in the tools application programmers use, debugger users must also
have some awareness of the use of dynamic linking. For example, if they reference the symbol printf
in a program that uses a shared C library but has not yet started executing, the debugger will fail to find it.
If, however, such a reference has been made after the same program has executed far enough to call the
program’s main(), then printf will appear.

5. Policies: Applying the Mechanisms

The previous sections have provided descriptions of our approach to providing a shared library capa-
bility through the application of basic mechanisms. We have also described the basic mechanisms
involved. In this section, we describe the policies by which we use the mechanisms to build a system that
provides and uses shared libraries. In general, the considerations applied in setting these policies were (in
decreasing order of priority):

� maximize sharing (resource utilization performance);
� maximize flexibility (enriched environment);
� ‘‘Principle of Least Astonishment’’ (user compatibility).

This is to say that a conflict between something that was completely compatible and something that
improved sharing or flexibility, generally favored the latter. However, in many cases, it has been possible
to accomplish all three considerations.
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5.1. System Construction

To meet the goals for resource reduction in the system, the system itself should be built to use shared
libraries, and thus, dynamic link editing. This creates the potential for three sorts of problems:

� deferred errors (the so-called ‘‘pintf’’ problem) that are manifested after the system is
installed;

� the potential for chaos if an important shared library is deleted; and
� the potential for security problems with ‘‘setuid’’ programs.

To deal with the problem of deferred errors, a set of programs that are supposed to be self-consistent
should be built using the assertion-checking facilities previously described.

To deal with the chaos that would result if (for example) a shared C library were deleted from the
system, a number of commands and utilities will not be built with shared libraries. These include but
would probably not be limited to: init(8), getty(8), the shells, mv(1), ln(1), ls(1), tar(1) and restore(8) −
essentially programs that would be necessary to restore the missing library from some other other source.

Finally, programs that are built as ‘‘setuid’’ (or ‘‘setgid’’ for that matter) are not built to use shared
libraries. Such programs could be easily subverted by incorporating a ‘‘trojan horse’’ into a library on
which they depend.

5.2. Dynamic Binding

To maximize the benefits of shared libraries, we have decided to make their use the default by hav-
ing the default binding mode for ld be -Bdynamic. This creates the potential for users of the programs ld
builds to be ‘‘surprised’’ by the special considerations of dynamically linked executables the next time they
rebuild their programs. In this case, our preference for maximizing sharing took precedence over the
potential for user surprise, a choice we made because we believe:

� most users want the benefits; and
� the mechanisms are sufficiently transparent that the ‘‘potential’’ for surprise is not considered

to be the same as ‘‘likelihood’’.

The greatest impact is expected to be on those users who create programs for shipment to other sys-
tems. Such users probably want to be isolated from the various problems that a dynamically linked pro-
gram can have, and should force their programs to be linked statically. While this may impact existing
build procedures, such developers usually take special steps when building production programs (such as
removing debugging features and employing extra optimization). The addition of another consideration
appeared to be a small cost relative to the benefits obtained by the community through maximizing sharing.

5.3. Use of assertions

To help deal with the potential complexities created by dynamic linking, ld has been provided with
the ability to validate some assertions about an executable it builds. The assertion checking is invoked with
the ld flag -assert, followed by a keyword argument from one of:

definitions if the resulting program were run now, there would be no run-time undefined sym-
bol diagnostics;

nosymbolic there are no symbolic relocation items remaining to be resolved; and

pure-text the resulting executable requires no further relocations to its text.

Together, these assertions are intended to support the development of production programs by allow-
ing the verification of important properties: for instance that a program will not produce run-time link edit
diagnostics, or that a piece of code intended to be a ‘‘shared library’’ is in fact sharable.

5.4. PIC Generation

As has been pointed out, PIC in dynamically linked objects improves their ability to be shared and is
thus a more efficient use of system resources. However, PIC executes slower than non-PIC, the degree of
degradation being dependent on the number of dynamic indirect references the code incurs. Although
refinements to the generated code may ultimately make the performance impact of PIC negligible, we have
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chosen to make the use of PIC an option. Our expectation is that only code intended to be part of a shared
library will be compiled as PIC.

We also expect that few users will enable the generation of PIC in their application programs, simply
because it takes extra effort to do so. However, this raises the issue of the binding of non-PIC code to the
PIC shared libraries it uses. The binding that must occur involves all references to:

� commons: allocated after the program is completely assembled;
� initialized data: imported from the shared libraries; and
� entry points: supplied by the shared libraries.

The implication of these binding operations is simply that the link editing that implements the binding will
render the edited code unsharable.

To improve the degree of sharing for such programs, ld can be made to force the allocation of com-
mons and to create aliases for library entry points. These allocations and aliases are created as part of the
non-PIC executable, and result in ‘‘pure-text’’ non-PIC programs even if they have dynamically linked
components. These options (-dc to force the definition of common storage, and -dp to force the definition
of procedure aliases), are included by the C compiler driver automatically in the ld command line it gen-
erates.

6. Examples: .so Construction

6.1. Shared C Library

The construction of the shared C library involved:
� compilation of all of its C source modules using the -pic option;
� modifications of some assembly-language source files so that the assembly source was also

position-independent; and
� ld’ing the resulting collection of .o files to create libc.so.1.0.

The modification of the assembly-language source files was, of course, not a requirement for the library to
function − simply to make it more sharable. In this area, we fell short of our goal for having shared
libraries be transparent to library source code, though happily the amount of assembly source in the system
is relatively small.

The ld operation, although in reality involving more complex operations resulting from the way we
build the various versions of the C library, is conceptually just:

% ld -o libc.so.1.0 -assert pure-text *.o

assuming the current directory for the command contained only the .o files comprising the C library. Since
no entry point is supplied, and lacking any other clue to an absolute address, ld simply stops processing
after it has combined all the object files, built the GOT and PLT’s, and performed any intra-library PC-
relative relocations. The assertion request will cause ld to issue a diagnostic if the library requires further
relocation to the code contained within it, a sign that a non-PIC object has found its way into the library.

6.2. ld.so

The execution-time link-editor, ld.so is built with an ld command that has the form:

% ld -o ld.so -Bsymbolic -assert nosymbolic ... list of modules ...

and is conceptually just like other .so files. However, it also involves the use of a special binding control
option -Bsymbolic and the assertion nosymbolic.

Normally when ld builds a program lacking an entry point or other absolute addressing information,
it is unable to perform its symbolic reduction operations simply because it can not assume that symbols
from other executable files will not be added later. However, ld.so must be self-contained, or else it would
require itself to operate and would otherwise pollute the symbol space of the programs it link edits.

The -Bsymbolic flag forces ld to perform symbolic reduction operations using the information it has
now, leaving only relative reductions to be performed − something ld.so resolves as part of its
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bootstrapping operations. The result should be a completely self-contained program, in which all symbolic
references are satisfied by its own internal definitions. The nosymbolic assertion tests whether or not this
is in fact the case.

7. Examples: Application Construction

To illustrate the use of the mechanisms by applications users, we will consider several simple exam-
ples of application program construction.

7.1. ‘‘Hello World’’

The classic simple C program is the one that simply prints ‘‘Hello world’’ on its standard output
using printf and then exits. In an environment where the standard library path includes a .so form of the C
library, the command

% cc -o hello hello.c

generates the ld command

% ld -e start -dc -dp -o hello /lib/crt0.o hello.o -lc

This ld command will cause the creation of the executable file hello. Since the default behavior of ld is
to prefer the use of shared libraries, hello will be built as an ‘‘incomplete’’ executable requiring the
inclusion of the library file libc.so[.v] (where [.v] represents the required version string) at exe-
cution time.

When the program is executed, crt0 will discover the __DYNAMIC structure ld left behind and map
in the execution-time linker, ld.so. ld.so will map in the appropriate version of libc.so, allocate any
uninitialized commons required by the program, and cause unresolved procedure references in both
hello and libc.so to call ld.so. The user’s call to printf invokes such a call, causing ld.so to search
first the symbol table of hello and then libc.so for a definition of printf. The definition is found in
libc.so and the PLT entry for the original call is updated to cause future references to go directly to
printf. printf internally makes other calls to various parts of the C library, each of these intercepted and
relocated by ld.so.

Although it might be argued that the relocations of intra-C-library calls could have been optimized
by prebinding them. However, this would break interposition, as demonstrated by the next example.

7.2. Interposition

Consider the building of the program hello again, this time involving a special library, libin-
terpose. This library, like libc, is available in a .so form. The command used to build hello is:

% cc -o hello hello.c -linterpose

transparently invoking an ld command referencing libinterpose before libc. libinterpose
defines entry points for various system calls, such as read and write, that in addition to invoking the
required system call also take various statistics on the use of the system calls they surround.

As before, ld.so is invoked and maps in the two libraries, first libinterpose and then libc.
The program calls printf requiring a relocation to the entry point in libc. Eventually, the code that
implements printf and its descendents issues a call to write.

As previously noted, libinterpose defines an entry point for write. However, so does libc,
as the standard interface for the write system call. ld.so resolves the ambiguity by using the ordering it
established when mapping in .so’s, which places libinterpose first. Thus, libinterpose is
effectively interposed for all uses of write in this program. If hello itself had defined a write entry point,
it would have taken precedence over both libinterpose and libc.

7.3. Mixing Static and Dynamic Binding

Consider a program linked with two shared libraries, liba and (automatically) libc. A third
library, libb, however it is only available in an archive, or .a, form. These are combined with the pro-
gram foo.c with the command
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% cc -o foo foo.c -la -lb

foo references a procedure bar defined in both liba and libb. ld handles this problem by recogniz-
ing that liba contains a definition for bar, and ignoring the one provided in libb. Thus, even though
the material from liba is not incorporated into the program until execution time, libb is prevented
from contributing a definition.

However, suppose foo did not reference bar, but liba did and further, had no definition for it?
In this case, ld would incorporate the definition from libb, and again the intent of the ordering on the
command line is followed despite the difference in binding times.

8. Conclusions and Future Work

We have described the design of a shared libraries facility satisfying most of our goals, including:
� no kernel support specific to shared libraries or dynamic linking;
� transparency to application source code and build procedures;
� transparency to library source in higher-level languages; and
� no administrative procedures required to create or use shared libraries.

Some goals for transparency were only partially achieved, the most significant being the potential confu-
sion to those using the system’s debugging tools. The need to change some library assembly source is con-
sidered an acceptable minor shortcoming.

Although we have only limited experience with the implementation, early performance measure-
ments indicate that we should meet our performance goals for ‘‘average’’ programs. These early measure-
ments reveal:

� PIC degradation: the use of PIC in libraries does degrade execution time, although in many
programs the degradation in negligible. The degradation is most noticeable in those programs
that execute primarily in the libraries, and in some cases the degradation fails to meet our lim-
its of 10%. However, we believe there are opportunities for improving the generation of PIC.

� Start-up costs: programs previously dominated by start-up costs and that use only a few
libraries fall within our 50% goals. We have identified several areas for optimizing the start-
up process, including caching the results of library searches. The start-up overhead for pro-
grams that use many libraries is unacceptably large, and is an area we are investigating.

� Space reduction: measurements over most of the system’s standard utilities suggest that the
average per-program savings from the use of shared libraries will be approximately 24K bytes.

During the time we obtained these early measurements, the new VM system on which the work was per-
formed was also being debugged and shaken-out. The measurements were taken in a worst case environ-
ment where only the test programs employed shared libraries. Thus, any benefits or problems created by
the dynamics of an environment that is based on shared libraries have not been determined, though it is
expected that the sharing of the C library will have a positive impact.

Like most technologies, shared libraries and the mechanisms from which we build them can be
abused. The execution-time loading we perform clearly has a cost, and excessive use of it in production
programs may produce unacceptable performance. However, extensive use during program development
adds a new element of flexibility that developers can use to enhance their development environment. An
additional consideration is that a library is now a more powerful construct. Previously, the benefits of
libraries were in the packaging they provided commonly used facilities. However, that packaging can now
be used to provide performance and functional benefits as well.

Our future plans include:
� Performance enhancement: continuing efforts in this area for the foreseeable future. An area

of particular interest is work to provide different space/time trade-off points than the two pro-
vided by the current implementation.

� Common Link Editor source: although they can be conceptually viewed as one, at present
the two link editors ld and ld.so are implemented as separate programs. ld.so is particularly
simplified, a short-cut taken to speed implementation of a first cut at the facility. We would
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like to build both programs from a common source. Ideally, ld should just be an executable
jacket to the common code in ld.so.

� Programmatic interface: some programs, particularly based on interpretive languages such as
LISP, can dynamically generate dynamic references. We would like to support the handling of
such references through a common mechanism, and thus wish to provide a program-accessible
interface to the services now provided invisibly.

� Different exception handling: the current disposition of execution-time errors is to abort the
program in which they occur. We would like to investigate the program development environ-
ments that might be created with other exception handling policies.
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