
CS4120/4121/5120/5121—Spring 2019
Programming Assignment 7

Object-Oriented Features
Due: Wednesday, May 15, 4:30pm

This assignment requires to you add object-oriented features, completing your compiler. The
new, extended language is called Xi++, which adds classes and inheritance to Xi. The differences
between Xi++ and Xi are described in Xi++ Language Specification.

The due date for this assignment is a hard deadline. Note that the project is due at 4:30pm rather
than at midnight. We recommend aiming to get the project done at least a couple of days ahead of
time.

0 Changes

• None yet; watch this space.

1 Instructions

1.1 Grading

Solutions will be graded on documentation and design, completeness of the implementation,
correctness, and style. 10% of the score is allocated to whether bugs in past assignments have been
fixed.

1.2 Partners

You will work in a group of 3–4 students for this assignment. This should be the same group as in
the last assignment. If not, please discuss with the course staff.

Remember that the course staff is happy to help with problems you run into. For help, read all
Piazza posts and ask questions (that have not already been addressed), attend office hours, or meet
with any course staff member either at the prearranged office hour time or at a mutually satisfactory
time you arrange.

1.3 Package names

Please ensure that all Java code you submit is contained within a package (or similar, for other
languages) whose name contains the NetID of at least one of your group members. Subpackages
under this package are allowed and strongly encouraged. They can be named however you would
like.

CS4120/4121/5120/5121 Spring 2019 1/7 Programming Assignment 7

http://www.cs.cornell.edu/courses/cs4120/2019sp/project/oolang.pdf


2 Design overview document

We expect your group to submit an overview document. The Overview Document Specification
outlines our expectations.

3 Building on previous programming assignments

As before, you are building upon your work from Programming Assignment 6. The protocol is
the same as in prior assignments: you are required to develop and implement tests that expose
any problems with your implementation, and then fix the problems. For PA7, the correctness and
completeness of your work for previous assignments will count for much more than it has earlier—it
will count about as much as your work on the new features for PA7. If you had serious problems
with the correctness of your PA6 submission, it is prudent to focus on ensuring that your compiler
works correctly for Xi (without optimizations turned on) before tackling the new object-oriented
features.

4 Version control

As in the last assignment, you must submit file pa7.log that lists the commit history from your
group since your last submission.

5 QtXi: A GUI library for Xi++

To help you do interesting things with your Xi++ compilers, we have decided to provide you with a
basic GUI library. This way you can interact better with your programs, and perhaps draw some
nice graphics. In particular, we provide an Xi++ interface to a subset of the cross-platform Qt
library to Xi++ programs.

The source code for the library is posted on the course website. Additionally, the VM has been
updated with the library provided and prebuilt in the QtXi directory, along with the runtime library
from PA5 provided and prebuilt in the runtime directory.

Under QtXi/examples, you’ll find several examples of Xi++ code that use this library, along
with corresponding assembly code for each Xi++ example that you can use to get started right away
and as guidance when adding Xi++ to your compiler.

To link with this library, use linkqt.sh under QtXi, which is similar to linkxi.sh under
runtime but also links in the QtXi library and its dependencies.

To run programs linked against this library, you will need an X server running on your host
machine. If you are running Linux on your host machine, you are likely already running one. On
macOS, the standard choice is XQuartz. On Windows, try Xming. vagrant ssh is preconfigured
to enable X forwarding over SSH, so X programs executed via such an SSH session should
automatically open on the host X server. A good way to test this is to invoke xcalc in an SSH
session on the VM. Once xcalc is working, you should be able to link and run one of the example
programs under QtXi/examples.

CS4120/4121/5120/5121 Spring 2019 2/7 Programming Assignment 7

http://www.cs.cornell.edu/courses/cs4120/2019sp/hw/overview-requirements.html
http://www.qt.io
https://www.xquartz.org
http://www.straightrunning.com/XmingNotes/


This library has been tested using our compiler, and was used successfully in the last iteration of
the course, but bugs are always possible! The staff will appreciate any feedback.

6 Example programs

Some example programs are available for testing your compiler:

• animate and animate-fancy: Bouncing ball demos that leverage various Xi++ and QtXi features.
• layouts, onewidget, and widgetevents: Some other examples of interacting with QtXi.
• mandelbrot: A graphical Mandelbrot set explorer using QtXi.

• Additionally, we plan to add some Xi++ test cases to the released xth tests soon. Keep an eye on
Piazza for this announcement.

7 Language extension

We expect you to design, implement, document, and test some new, small feature for Xi++.
Some examples of features you might add are the following, roughly in order of difficulty.

• Allow constants to be defined in interface and source files, integrated with constant folding
(relatively easy).
• Support more powerful multiple-assignment syntax, with multiple expressions appearing on the

right-hand side (relatively easy).
• Java-style break and continue that can jump to named labels.
• Make Xi type-safe by detecting uninitialized variables.
• Multiple inheritance with sparse dispatch vectors (relatively challenging).

But you don’t have to implement one of these choices—feel free to be creative! It doesn’t have
to be a big feature, and smaller project groups should feel comfortable in implementing smaller
features. You will get a bit more credit for attempting more complex features, but you will also get
credit for building a rock-solid implementation of your feature and for documenting it clearly. So
don’t bite off more than necessary.

CS4120/4121/5120/5121 Spring 2019 3/7 Programming Assignment 7



It is especially important that your new feature be covered well in your overview document
so that we can give you credit for your work. Like the other components of the assignment, your
document should at least include a strong specification for the feature, provide some examples of its
use, discuss the design and implementation, and indicate where to find the relevant source code,
along with any other information you think is pertinent. The Overview Document Specification is a
great resource for working on this.

Your extended language should be backward-compatible with the Xi++ spec so that correct
programs written according to that spec still work. Furthermore, keep in mind that the Xi++ spec
is itself backward-compatible with the Xi spec, so your compiler should also handle Xi programs
successfully.

8 Command-line interface

The command-line syntax is largely as defined in the previous assignment. Because Xi++ is
backward-compatible with Xi, your xic does not need any new command line options or features to
differentiate between them. However, your compiler should also support a -noextension option
to turn off your language extension and just support Xi++.

9 Build script

Your build script xic-build from previous programming assignments should remain available.
The expected behaviors of the build script are as defined in the previous assignment. Problems
within the build script from previous submissions should be fixed.

10 Test harness

xth has been updated to contain test cases for this assignment and to support testing language
extension.

To update xth, run the update script in the xth directory on the VM.
A general form for the xth command-line invocation is as follows:

xth [options] <test-script>

For the full list of currently available options, invoke xth.
The best way to run xth with the provided test cases is from the home directory of the VM,

using the following form of command:

xth -compilerpath <xicpath> -testpath <tp> -workpath <wp> <xthScript>

where

• <xicpath> is the path to the directory containing your build script and command-line interface.
• <tp> is of the form xth/tests/pa#/, where # is the programming assignment number.

CS4120/4121/5120/5121 Spring 2019 4/7 Programming Assignment 7

http://www.cs.cornell.edu/courses/cs4120/2019sp/hw/overview-requirements.html


• <wp> is preferably a fresh, nonexistent directory such as shared/xthout.
• <xthScript> is of the form xth/tests/pa#/xthScript, where # is the programming assign-

ment number.

An xth test script specifies a number of test cases to run. Directory xth/tests/pa7 will
contain a sample test script (xthScript), along with several test cases. xthScript also lists the
syntax of an xth test script.
xth was used successfully in the last iteration of the course, but bugs are always possible. Please

report errors, request additional features, or give feedback on Piazza.

11 Best Compiler Competition

The compilers from various groups will be compared in the 2019 CS 4121/5121 Compiler Bakeoff!
The winning compiler project, based on the quality and correctness of generated code, will gain
bragging rights, receive handsome wood plaques, and be immortalized on the course web page.

Functional and benchmark test cases

For fun and good karma, you are encouraged to submit programs that you think are good functional
tests or good performance benchmarks. We encourage each group to submit up to five functional
test cases and up to three benchmark test cases.

Each test case must be a valid Xi++ source file. A compiler c passes a test t if and only if

• c successfully compiles t into an assembly file a,
• assembling and linking a against the standard Xi library results in a runnable program o, and
• when executed, o terminates with exit code 0 within 3 seconds; i.e., it terminates normally, and

not as a result of an assertion failing or an array-out-of-bounds violation.

All test cases must

• be UTF-8 encoded files, using the Unix standard of LF as a line separator (also known informally
as \n)
• be valid Xi++ programs, according to the standard specifications (i.e., the Xi++ language

specification),
• not read input,
• contain at most 20 lines of code, excluding comments, and
• contain no line longer than 80 characters.

These test cases will also be run against the compilers of other groups, and groups will receive
good karma for generating the fastest code for submitted test cases, or for submitting test cases that
expose bugs in other compilers. An ideal functionality test case will break exactly half the other
compiler projects.

CS4120/4121/5120/5121 Spring 2019 5/7 Programming Assignment 7

bakeoff/index.html


12 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your overview document for the assignment. This file should contain
your names, your NetIDs, all known issues you have with your implementation, and the names
of anyone you have discussed the homework with. It should also include descriptions of any
extensions you implemented.
• A zip file containing these items:

– Source code: You should include everything required to compile and run the project. We
require that xic and xic-build are at the root of the zip file.
If you use a lexer generator, please include the lexer input file, e.g., *.flex. Please include
your parser generator input file, e.g., *.cup.
Your xic-build should use these files to generate source code, and you should not submit the
corresponding generated source code files (e.g. *.java). Do not submit compiled versions of
your own code (submitting precompiled libraries is OK).

– Tests: You should include all your test cases and test code that you used to test your program.
Be sure to mention where these files are in your overview document. Do not submit instructor
tests or xth.

– Libraries: Your build process must not download anything from the internet. If your code
depends on any third-party libraries, they must be included in the submission.
Include precompiled libraries (e.g. JAR files) when feasible, especially for large libraries. For
smaller libraries, such as the release code from PA2 and PA4, it often makes sense to include
the source code directly, but be sure to make clear what is library code, e.g. by package name.
Do not make global environment changes in your xic-build script.

Do not include any derived, IDE, or SCM-related files or directories such as .class, .jar
.classpath, .project, .git, and .gitignore, unless they are precompiled versions of third
party libraries.
It is strongly encouraged that you use the zip CLI tool on a *nix platform, such as the course
VM. Do not use Archive Utility or Finder on macOS as they include extraneous dotfiles, and do
not use a Windows tool which does not maintain the executable bit of your xic and xic-build.
• pa7.log: A dump of your commit log since your last submission from the version control system

of your choice.

13 Advice

It will be tempting to walk sequentially through each of the phases of the compiler, upgrading
each to the new languages features. That strategy will probably not make full use of your team’s
implementation bandwidth. It will probably be better to plan out a strategy in which different group
members can work on different compiler phases simultaneously. For example, you don’t need to
have a lexer or parser working in order to hand-craft a few ASTs that can be used as test cases for
later compiler phases.

Also, do not forget to create negative test cases such as source files with type errors, parse errors,

CS4120/4121/5120/5121 Spring 2019 6/7 Programming Assignment 7



etc. to ensure your compiler does not accept bad source programs.

CS4120/4121/5120/5121 Spring 2019 7/7 Programming Assignment 7


	Changes
	Instructions
	Grading
	Partners
	Package names

	Design overview document
	Building on previous programming assignments
	Version control
	QtXi: A GUI library for Xi++
	Example programs
	Language extension
	Command-line interface
	Build script
	Test harness
	Best Compiler Competition
	Submission
	Advice

