
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 20: Live Variable Analysis
Lecturer: Maks Orlovich

14 Oct 09
CS 4120 Introduction to Compilers 2

Problem
• Abstract assembly contains arbitrarily many

registers ti

• Want to replace all such nodes with register
nodes for e[a-d]x, e[sd]i, (ebp)

• Local variables allocated to TEMP’s too
• Only 6-7 usable registers: need to allocate

multiple ti to each register

• For each statement, need to know which
variables are live to reuse registers

CS 4120 Introduction to Compilers 3

Using scope
• Observation: temporaries, variables have bounded

scope in program
• Simple idea: use information about program scope

to decide which variables are live
• Problem: overestimates liveness

b is live

c is live, b is not

what is live here?

{ int b = a + 2;
 int c = b*b;
 int d = c + 1;
 return d; }

CS 4120 Introduction to Compilers 4

Live variable analysis
• Goal: for each statement, identify which

temporaries are live
• Analysis will be conservative (may over-

estimate liveness, will never under-
estimate)

But more precise than simple scope analysis
(will estimate fewer live temporaries)

CS 4120 Introduction to Compilers 5

Control Flow Graph
• Canonical IR forms control flow graph (CFG) :

statements are nodes; jumps, fall-throughs are edges

MOVE

EXP

CJUMP

JUMP

fall-through edges

out-edges

in-edges

CS 4120 Introduction to Compilers 6

Liveness
• Liveness is associated with edges of control

flow graph, not nodes (statements)

• Same register can be used for di!erent
temporaries manipulated by one stmt

live: a, c, e

live: b, c

CS 4120 Introduction to Compilers 7

Example
a = b + 1

MOVE(TEMP(ta), TEMP(tb) + 1)

mov ta, tb

add ta, 1

Register allocation: ta ! eax, tb ! eax

mov eax, eax
add eax, 1

Live: tb
mov ta, tb
add ta,1

Live: ta (maybe)

CS 4120 Introduction to Compilers 8

Use/Def
• Every statement uses some set of variables

(reads from them) and defines some set of
variables (writes to them)

• For statement s define:
– use[s] : set of variables used by s

– def [s] : set of variables defined by s

• Example:
a = b + c use = b,c def = a

a = a + 1 use = a def = a

CS 4120 Introduction to Compilers 9

Liveness

Variable v is live on edge e if:
"ere is
–a node n in the CFG that uses it and

–a directed path from e to n passing through
no def

How to compute e#ciently?
How to use?

CS 4120 Introduction to Compilers 10

Simple algorithm: Backtracing

“variable v is live on edge e if there is a node n in CFG that
uses it and a directed path from e to n passing through
no def ”

(Slow) algorithm: Try all paths from each use of a variable,
tracing backward in the control flow graph until a def
node or previously visited node is reached. Mark
variable live on each edge traversed.

CS 4120 Introduction to Compilers 11

Dataflow Analysis
• Idea: compute liveness for all variables

simultaneously
• Approach: define equations that must be

satisfied by any liveness determination
• Solve equations by iteratively converging on

solution
• Instance of general technique for

computing program properties: dataflow
analysis

CS 4120 Introduction to Compilers 12

Abstract Assembly
• Abstract assembly = assembly code w/ infinite register

set
• Canonical intermediate code = abstract assembly code –

except for expression trees

• MOVE(e1, e2) ! mov e1, e2

• JUMP(e) ! jmp e

• CJUMP(e,l) ! cmp e1, e2

 [jne|je|jgt|…] l

• CALL(e, e1,…) ! push e1; … ; call e

• LABEL(l) ! l:

CS 4120 Introduction to Compilers 13

Instruction selection
• Conversion to abstract assembly is

problem of instruction selection for a
single IR statement node

• Full abstract assembly code: glue
translated instructions from each of the
statements

• Problem: more than one way to translate a
given statement. How to choose?

CS 4120 Introduction to Compilers 14

Example

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

add t1,[fp + 4]

mov t2, fp

add t2, 4

mov t3,[t2]

add t1, t3

?

MOVE(TEMP(t1), TEMP(t1) + MEM(TEMP(FP)+4))

ADD

CS 4120 Introduction to Compilers 15

Pentium ISA
• Need to map IR tree to actual machine instructions – need to know

how instructions work
• Pentium is two-address CISC architecture
• Typical instruction has

opcode (mov, add , sub, shl, shr, mul, div, jmp, jcc, push,
pop, test, enter, leave, &c.)

– destination (r,[r],[k],[r+k],[r1+r2],
 [r1+w*r2],[r1+w*r2+k])
(may also be an operand)

– source (any legal destination, or a constant)

 mov eax,1 add ebx,ecx

 sub esi,[ebp] add [ecx+16*edi],edi
je label1 jmp [fp+4]

opcode dest src

CS 4120 Introduction to Compilers 16

Tiling
• Idea: each Pentium instruction performs

computation for a piece of the IR tree: a tile

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

mov t2, ebp

add t2, 4

mov t3,[t2]

add t1, t3

ADDt2

t2

t3

• Tiles connected by

new temporary

registers (t2, t3) that

hold result of tile

CS 4120 Introduction to Compilers 17

Some tiles
MOVE

TEMP(t1) e2

mov t1, t
2

ADD

t1 t2

mov t
f
, t

1

add t
f
, t

2

(t
f
 a fresh

 temporary)

MOVE

MEM CONST(i)

ADD

mov [t
1
+t

2
], i

t1
t2

CS 4120 Introduction to Compilers 18

Problem
• How to pick tiles that cover IR statement tree with

minimum execution time?
• Need a good selection of tiles

– small tiles to make sure we can tile every tree
– large tiles for e#ciency

• Usually want to pick large tiles: fewer instructions
• Pentium: RISC core instructions take 1 cycle, other

instructions may take more
add [ecx+4], eax mov edx,[ecx+4]
 add edx,eax
 mov [ecx+4],eax

"

CS 4120 Introduction to Compilers 19

An annoying instruction
• Pentium mul instruction multiples single operand by
eax, puts result in eax (low 32 bits), edx (high 32
bits)

• Solution: add extra mov instructions, let register
allocation deal with edx overwrite

MUL
mov eax, t1

mul t2

mov t
f
, eaxt1 t2

CS 4120 Introduction to Compilers 20

Branches
• How to tile a conditional jump?
• Fold comparison operator into tile

CJUMP

l1 (l2)

test t1

jnz l1
t1

CJUMP

l1 (l2)

t1

EQ

t2

cmp t1, t2

je l1

CS 4120 Introduction to Compilers 21

More handy tiles
lea instruction computes a memory address but doesn’t

actually load from memory

ADD

t1 t2

lea t
f
, [t

1
+t

2
] (t

f
 a fresh

 temporary)

ADD

t1

t2

lea t
f
, [t

1
+k

1
*t

2
] (k

1
 one of

 2,4,8,16)

MUL

CONST(k1)

CS 4120 Introduction to Compilers 22

Greedy tiling
• Assume larger tiles = better
• Greedy algorithm: start from top of tree and use

largest tile that matches tree
• Tile remaining subtrees recursively

MOVE

MEM 4

ADD

MEM

ADD

FP 8

MUL

4
MEM

ADD

FP 12

CS 4120 Introduction to Compilers 23

How good is it?
Very rough approximation on modern
pipelined architectures: execution time is
number of tiles
Greedy tiling (Appel: “maximal munch”)
finds an optimal but not necessarily
optimum tiling: cannot combine two tiles
into a lower-cost tile
• We can find the optimum tiling using

dynamic programming!
CS 4120 Introduction to Compilers 24

Dataflow values

use[n] : set of variables used by n

def [n] : set of variables defined by n

in[n] : variables live on entry to n

out[n] : variables live on exit from n

Clearly: in[n] # use[n]

What other constraints are there?

CS 4120 Introduction to Compilers 25

Dataflow constraints

in[n] # use[n]
– A variable must be live on entry to n if it is

used by the statement itself

in[n] # out[n] – def [n]
– If a variable is live on output and the statement

does not define it, it must be live on input too

out[n] # in[n’] if n’ $ succ [n]
– if live on input to n’, must be live on output

from n
CS 4120 Introduction to Compilers 26

Iterative dataflow analysis
• Initial assignment to in[n], out[n] is empty set Ø : will not

satisfy constraints
in[n] # use[n]

in[n] # out[n] – def [n]

out[n] # in[n’] if n’ $ succ [n]

• Idea: iteratively re-compute in[n], out[n] when forced to by
constraints. Live variable sets will increase monotonically.

• Dataflow equations:

in’[n] = use[n] % (out[n] – def [n])

out’[n] = %n’ $ succ[n] in[n’]

CS 4120 Introduction to Compilers 27

Complete algorithm
 for all n, in[n] = out[n] = Ø

repeat until no change
 for all n

 out[n] = !n’ $ succ[n] in[n’]

 in[n] = use[n] ! (out[n] –
def[n])
 end

 end

• Finds fixed point of in, out equations
• Problem: does extra work recomputing in, out values

when no change can happen
CS 4120 Introduction to Compilers 28

• For simplicity: pseudo-code

Example

e=1

if x>0

z=e*e

y=e*x

e=z

if x&1

e=y

return x

def: e

use: x

use: xuse: e
def: z

use: e, x
def: y

use: z
def: e

use: x

use: y
def: e

1

2

3 4

5

6

7
8

CS 4120 Introduction to Compilers 29

Example

e=1

if x>0

z=e*e

y=e*x

e=z

if x&1

e=y

return x

def: e

use: x

use: x
use: e
def: z

use: e, x
def: y

use: z
def: e

use: x

use: y
def: e

1

2

3 4

5

6

7
8

2: in={x}
3: in={e}
4: in={x}
5: in={e,x}
6: in={x}
7: out={x}, in={x,z}
8: out={x}, in={x,y}
1: out={x}, in={x}
2: out={e,x}, in={e,x}
3: out={e,x}, in={e,x}
5: out={x}, in={e,x}
6: out={x,y,z}, in={x,y,z}
7: out={e,x}, in={x,z}
8: out={e,x}, in={x,y}
1: out={e,x}, in={x}
5: out={x,y,z}, in={e,x,z}
3: out={e,x,z}, in={e,x}
all equations satisfied

CS 4120 Introduction to Compilers 30

Faster algorithm
• Information only propagates between

nodes because of this equation:
out[n] = !n’ $ succ [n] in[n’]

• Node is updated from its successors
– If successors haven’t changed, no need to

apply equation for node
– Should start with nodes at “end” and work

backward

CS 4120 Introduction to Compilers 31

Worklist algorithm
• Idea: keep track of nodes that might need to be

updated in worklist : FIFO queue
 for all n, in[n] = out[n] = Ø
 w = { set of all nodes }
 repeat until w empty
 n = w.pop()

 out[n] = !n’ $ succ [n] in[n’]

 in[n] = use[n] ! (out[n] — def [n])
 if change to in[n],
 for all predecessors m of n, w.push(m)
 end

