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Problem
• Abstract assembly contains arbitrarily many 

registers ti

• Want to replace all such nodes with register 
nodes for e[a-d]x, e[sd]i, (ebp)

• Local variables allocated to TEMP’s too
• Only 6-7 usable registers: need to allocate 

multiple ti to each register

• For each statement, need to know which 
variables are live to reuse registers
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Using scope
• Observation: temporaries, variables have bounded 

scope in program
• Simple idea: use information about program scope 

to decide which variables are live
• Problem: overestimates liveness
 

b is live

c is live, b is not

what is live here?

{   int b = a + 2; 
    int c = b*b;
    int d = c + 1;
    return d; }
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Live variable analysis
• Goal: for each statement, identify which 

temporaries are live
• Analysis will be conservative (may over-

estimate liveness, will never under-
estimate)

But more precise than simple scope analysis 
(will estimate fewer live temporaries)
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Control Flow Graph
• Canonical IR forms control flow graph (CFG ) :  

statements are nodes; jumps, fall-throughs are edges

MOVE

EXP

CJUMP

JUMP

fall-through edges

out-edges

in-edges
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Liveness
• Liveness is associated with edges of control 

flow graph, not nodes (statements)

• Same register can be used for di!erent 
temporaries manipulated by one stmt

  

live: a, c, e

live: b, c
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Example
a = b + 1

 

MOVE(TEMP(ta), TEMP(tb) + 1)

mov ta, tb

add ta, 1

Register allocation: ta ! eax, tb ! eax

mov eax, eax
add eax, 1

Live: tb
mov ta, tb
add ta,1

Live: ta (maybe)
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Use/Def
• Every statement uses some set of variables 

(reads from them) and defines some set of 
variables (writes to them)

• For statement s define:
– use[s] : set of variables used by s

– def [s] : set of variables defined by s

• Example:
a = b + c  use = b,c    def = a

a = a + 1        use = a       def = a
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Liveness

Variable v is live on edge e if:
"ere is
–a node n in the CFG that uses it and

–a directed path from e to n passing through 
no def

How to compute e#ciently?
How to use?
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Simple algorithm: Backtracing

“variable v is live on edge e if there is a node n in CFG that 
uses it and a directed path from e to n passing through 
no def ”

(Slow) algorithm: Try all paths from each use of a variable, 
tracing backward in the control flow graph until a def 
node or previously visited node is reached. Mark 
variable live on each edge traversed.
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Dataflow Analysis
• Idea: compute liveness for all variables 

simultaneously
• Approach: define equations that must be 

satisfied by any liveness determination
• Solve equations by iteratively converging on 

solution
• Instance of general technique for 

computing program properties: dataflow 
analysis
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Abstract Assembly
• Abstract assembly = assembly code w/ infinite register 

set
• Canonical intermediate code = abstract assembly code – 

except for expression trees

• MOVE(e1, e2)  !  mov e1, e2

• JUMP(e)  !  jmp e

• CJUMP(e,l)  !  cmp e1, e2

  [jne|je|jgt|…] l

• CALL(e, e1,…)  !  push e1; … ; call e

• LABEL(l ) ! l:
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Instruction selection
• Conversion to abstract assembly is 

problem of instruction selection for a 
single IR statement node

• Full abstract assembly code: glue 
translated instructions from each of the 
statements

• Problem: more than one way to translate a 
given statement. How to choose?
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Example

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

add t1,[fp + 4]

mov t2, fp

add t2, 4

mov t3,[t2]

add t1, t3

?

MOVE(TEMP(t1), TEMP(t1) + MEM(TEMP(FP)+4))

ADD
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Pentium ISA
• Need to map IR tree to actual machine instructions – need to know 

how instructions work
• Pentium is two-address CISC architecture
• Typical instruction has

opcode (mov, add , sub, shl, shr, mul, div, jmp, jcc, push, 
pop, test, enter, leave, &c.)

– destination (r,[r],[k],[r+k],[r1+r2],
   [r1+w*r2],[r1+w*r2+k] )
(may also be an operand)

– source (any legal destination, or a constant)
  

 mov eax,1      add ebx,ecx

 sub esi,[ebp]  add [ecx+16*edi],edi
je label1  jmp [fp+4]

opcode dest src
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Tiling
• Idea: each Pentium instruction performs 

computation for a piece of the IR tree: a tile

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

mov t2, ebp

add t2, 4

mov t3,[t2]

add t1, t3

ADDt2

t2

t3

• Tiles connected by 

new temporary 

registers (t2, t3) that 

hold result of tile
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Some tiles
MOVE

TEMP(t1) e2

mov t1, t
2

ADD

t1 t2

mov t
f
, t

1

add t
f
, t

2

(t
f
 a fresh

  temporary)

MOVE

MEM CONST(i)

ADD

mov [t
1
+t

2
], i

t1
t2
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Problem
• How to pick tiles that cover IR statement tree with 

minimum execution time?
• Need a good selection of tiles

– small tiles to make sure we can tile every tree
– large tiles for e#ciency

• Usually want to pick large tiles: fewer instructions
• Pentium: RISC core instructions take 1 cycle, other 

instructions may take more
add [ecx+4], eax   mov edx,[ecx+4]
       add edx,eax
       mov [ecx+4],eax

"
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An annoying instruction
• Pentium mul instruction multiples single operand by 
eax, puts result in eax (low 32 bits), edx (high 32 
bits)

• Solution: add extra mov instructions, let register 
allocation deal with edx overwrite

MUL
mov eax, t1

mul t2

mov t
f
, eaxt1 t2
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Branches
• How to tile a conditional jump?
• Fold comparison operator into tile

CJUMP

l1 (l2)

test t1

jnz l1 
t1

CJUMP

l1 (l2)

t1

EQ

t2

cmp t1, t2

je l1 
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More handy tiles
lea instruction computes a memory address but doesn’t

actually load from memory

ADD

t1 t2

lea t
f
, [t

1
+t

2
] (t

f
 a fresh

  temporary)

ADD

t1

t2

lea t
f
, [t

1
+k

1
*t

2
] (k

1
 one of

 2,4,8,16)

MUL

CONST(k1)
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Greedy tiling
• Assume larger tiles = better
• Greedy algorithm: start from top of tree and use 

largest tile that matches tree
• Tile remaining subtrees recursively

MOVE

MEM 4

ADD

MEM

ADD

FP 8

MUL

4
MEM

ADD

FP 12
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How good is it?
Very rough approximation on modern 
pipelined architectures: execution time is 
number of tiles
Greedy tiling (Appel: “maximal munch”) 
finds an optimal but not necessarily 
optimum tiling: cannot combine two tiles 
into a lower-cost tile
• We can find the optimum tiling using 

dynamic programming!
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Dataflow values

use[n] : set of variables used by n

def [n] : set of variables defined by n

in[n] : variables live on entry to n

out[n] : variables live on exit from n

Clearly: in[n] # use[n]

What other constraints are there?
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Dataflow constraints

in[n] # use[n]
– A variable must be live on entry to n if it is 

used by the statement itself

in[n] # out[n] – def [n]
– If a variable is live on output and the statement 

does not define it, it must be live on input too

out[n] # in[n’ ]   if    n’ $ succ [n]
– if live on input to n’, must be live on output 

from n
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Iterative dataflow analysis
• Initial assignment to in[n], out[n] is empty set Ø : will not 

satisfy constraints
in[n] # use[n]

in[n] # out[n] – def [n]

out[n] # in[n’ ]   if    n’ $ succ [n]

• Idea: iteratively re-compute in[n], out[n] when forced to by 
constraints. Live variable sets will increase monotonically.

• Dataflow equations:

in’[n] = use[n] % (out[n] – def [n])

out’[n] = %n’ $ succ[n] in[n’]
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Complete algorithm
 for all n, in[n] = out[n] = Ø

repeat until no change
  for all n

  out[n] = !n’ $ succ[n] in[n’]

   in[n] = use[n] ! (out[n] – 
def[n]) 
 end

 end

• Finds fixed point of in, out equations
• Problem: does extra work recomputing in, out values 

when no change can happen
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• For simplicity: pseudo-code

Example

e=1

if x>0

z=e*e

y=e*x

e=z

if x&1

e=y

return x

def: e

use: x

use: xuse: e
def: z

use: e, x
def: y

use: z
def: e

use: x

use: y
def: e

1

2

3 4

5

6

7
8
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Example

e=1

if x>0

z=e*e

y=e*x

e=z

if x&1

e=y

return x

def: e

use: x

use: x
use: e
def: z

use: e, x
def: y

use: z
def: e

use: x

use: y
def: e

1

2

3 4

5

6

7
8

2: in={x}
3: in={e}
4: in={x}
5: in={e,x}
6: in={x}
7: out={x}, in={x,z}
8: out={x}, in={x,y} 
1: out={x}, in={x}
2: out={e,x}, in={e,x}
3: out={e,x}, in={e,x}
5: out={x}, in={e,x}
6: out={x,y,z}, in={x,y,z}
7: out={e,x}, in={x,z}
8: out={e,x}, in={x,y}
1: out={e,x}, in={x}
5: out={x,y,z}, in={e,x,z}
3: out={e,x,z}, in={e,x}
all equations satisfied
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Faster algorithm
• Information only propagates between 

nodes because of this equation:
out[n] = !n’ $ succ [n] in[n’]

• Node is updated from its successors
– If successors haven’t changed, no need to 

apply equation for node
– Should start with nodes at “end” and work 

backward
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Worklist algorithm
• Idea: keep track of nodes that might need to be 

updated in worklist : FIFO queue
 for all n, in[n] = out[n] = Ø
 w = { set of all nodes }
 repeat until w empty
  n = w.pop( )

  out[n] = !n’ $ succ [n] in[n’]

  in[n] = use[n] ! (out[n] — def [n])
     if change to in[n],
   for all predecessors m of n, w.push(m)
 end


