%
01101
B

CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 20: Live Variable Analysis
Lecturer: Maks Orlovich
14 Oct 09

Using scope

Observation: temporaries, variables have bounded
scope in program

Simple idea: use information about program scope
to decide which variables are live

Problem: overestimates liveness

{ intb=a+2;

. b is live
int ¢ = b*b; i< live. b is not
intd=c+1; cis Tve., is no
return d; } — what is live here?
CS 4120 Introduction to Compilers 3

Problem

« Abstract assembly contains arbitrarily many
registers t,

« Want to replace all such nodes with register
nodes for e[a-d]x, e[sd]i, (ebp)

« Local variables allocated to TEMP’s too

« Only 6-7 usable registers: need to allocate
multiple t; to each register

« For each statement, need to know which
variables are live to reuse registers

CS 4120 Introduction to Compilers 2

Live variable analysis

« Goal: for each statement, identify which
temporaries are live

« Analysis will be conservative (may over-
estimate liveness, will never under-
estimate)

But more precise than simple scope analysis
(will estimate fewer live temporaries)

CS 4120 Introduction to Compilers 4

Control Flow Graph

« Canonical IR forms control flow graph (CFG) :
statements are nodes; jumps, fall-throughs are edges

MOVE

LEe |

L caume |
[Jump | out-edges/ ‘ \

CS 4120 Introduction to Compilers 5

Liveness

Liveness is associated with edges of control

flow graph, not nodes (statements)
live: a, c, e

ant™

Same register can be used for different
temporaries manipulated by one stmt

CS 4120 Introduction to Compilers

Example

a=b+1

1l

MOVE(TEMP(ta), TEMP(tb) + 1)

1L
mov ta, tb mov ta, tb
add ta. 1 add ta,1

Register allocation: ta = eax, tb = eax

add eax, 1

CS 4120 Introduction to Compilers 7

Use/Def

Every statement uses some set of variables
(reads from them) and defines some set of
variables (writes to them)

For statement s define:

—use(s] : set of variables used by s

—def [s] : set of variables defined by s
Example:

a=b+c use =b,c def=a
a=a+1 use = a def = a

CS 4120 Introduction to Compilers

Liveness

Variable v is live on edge e if:
There is
a node n in the CFG that uses it and

a directed path from e to n passing through
no def

How to compute efficiently?
How to use?

CS 4120 Introduction to Compilers 9

Simple algorithm: Backtracing

“variable v is live on edge e if there is a node n in CFG that
uses it and a directed path from e to n passing through

no def”

(Slow) algorithm: Try all paths from each use of a variable,

tracing backward in the control flow graph until a def
node or previously visited node is reached. Mark
variable live on each edge traversed.

CS 4120 Introduction to Compilers 10

Dataflow Analysis

o Idea: compute liveness for all variables
simultaneously

« Approach: define equations that must be
satisfied by any liveness determination

« Solve equations by iteratively converging on
solution

« Instance of general technique for
computing program properties: dataflow
analysis

CS 4120 Introduction to Compilers 11

Abstract Assembly

« Abstract assembly = assembly code w/ infinite register
set

+ Canonical intermediate code = abstract assembly code —
except for expression trees

« MOVE(e, e,) = mov el, e2

e JUMP(e) = jmp e

e CJUMP(e,l) = cmp el, e2
[Jne|jeljgt]..] 1

o CALL(e, e,,...) = push el;...;call e

o LABEL(l)=1:

CS 4120 Introduction to Compilers 12

Instruction selection

« Conversion to abstract assembly is
problem of instruction selection for a
single IR statement node

« Full abstract assembly code: glue
translated instructions from each of the
statements

« Problem: more than one way to translate a
given statement. How to choose?

CS 4120 Introduction to Compilers 13

Pentium ISA

Need to map IR tree to actual machine instructions — need to know
how instructions work

Pentium is fwo-address CISC architecture
Typical instruction has

opcode (mov, add, sub, shl, shr,mul, div, jmp, jcc, push,
pop, test, enter, leave, &c.)

— destination (x, [r], [k], [r+k], [r1+x2],

[r1+w*r2], [r1+w*r2+k])
(may also be an operand)
— source (any legal destination, or a constant)
opcode dest src
AN 7/ -

mov eax,l add ebx,ecx
sub esi, [ebp] add [ecxt+l6*edi] ,edi
je labell jmp [fp+4]
CS 4120 Introduction to Compilers 15

Example

MOVE(TEMP(t1), TEMP(t1) + MEM(TEMP(FP)+4))

mov t2, fp
NOVE add t2, 4
TEMP(t1) ADD mov t3, [t2]

" add tl, t3

TEMP(t]) MEM o
| .
ADD
SN
TEMP(fp) 4

CS 4120 Introduction to Compilers 14

Tiling

« ldea: each Pentium instruction performs
computation for a piece of the IR tree: a tile

mov t2, ebp

add t2, 4
}AOVE mov t3,[t2]
TEMP(t]) ADD t add t1, t3
/K
TEMP(t1) MEM « Tiles connected by
t2

new temporary
registers (t2, t3) that
hold result of tile

CS 4120 Introduction to Compilers 16

Some tiles

mov tl, t,

€

mov t., t, (t afresh
add t;, t, temporary)

MOVE
/N ,
MEM CONST()

mov [t +t,], 1

CS 4120 Introduction to Compilers 17

Problem

« How to pick tiles that cover IR statement tree with
minimum execution time?
« Need a good selection of tiles
— small tiles to make sure we can tile every tree
— large tiles for efficiency
« Usually want to pick large tiles: fewer instructions

« Pentium: RISC core instructions take 1 cycle, other
instructions may take more

add [ecx+4], eax . mov edx, [ecx+4]
add edx,eax
mov [ecx+4],eax

CS 4120 Introduction to Compilers 18

An annoying instruction

« Pentium mul instruction multiples single operand by
eax, puts result in eax (low 32 bits), edx (high 32
bits)

« Solution: add extra mov instructions, let register
allocation deal with edx overwrite

mov eax, tl

mul t2
t, t, mov t., eax

CS 4120 Introduction to Compilers 19

Branches

« How to tile a conditional jump?

« Fold comparison operator into tile

test tl1
jnz 11

cmp t1, t2
je 11

CS 4120 Introduction to Compilers 20

More handy tiles

lea instruction computes a memory address but doesn’t
actually load from memory

CS 4120 Introduction to Compilers

lea t., [t;+t,] (t;afresh
temporary)

lea t,, [t,+k *t,] (k, one of
2,4,8,16)

21

Greedy tiling

« Assume larger tiles = better

« Greedy algorithm: start from top of tree and use
largest tile that matches tree

« Tile remaining subtrees recursively
MOVE

SN

MEM 4

ADD

/O~

MEM MUL.
7 MEM

|
ADD 4 I
7/ \ ADD
FP 8 /N
FP 12

CS 4120 Introduction to Compilers 22

How good is it?

Very rough approximation on modern
pipelined architectures: execution time is
number of tiles

Greedy tiling (Appel: “maximal munch”)
finds an optimal but not necessarily
optimum tiling: cannot combine two tiles
into a lower-cost tile

« We can find the optimum tiling using
dynamic programming!

CS 4120 Introduction to Compilers

23

Dataflow values

use[n] : set of variables used by n
def [n] : set of variables defined by n
in[n] : variables live on entry to n

out[n] : variables live on exit from n
Clearly: in[n] 2 use[n]

What other constraints are there?

CS 4120 Introduction to Compilers 24

Dataflow constraints

in[n] 2 use[n]

— A variable must be live on entry to n if it is
used by the statement itself

in[n] 2 out{n] - def [n]

— Ifavariable is live on output and the statement
does not define it, it must be live on input too

out[n] 21in[n’] if n’&E succ [n]

— if live on input to n’, must be live on output
fromn

CS 4120 Introduction to Compilers 25

Complete algorithm

for all n, in[n] = out[n] = @
repeat until no change

for all n
out[n] = U ey inn’]
in[n] = use[n] U (out[n] -
def[n])
end
end

« Finds fixed point of in, out equations

+ Problem: does extra work recomputing in, out values
when no change can happen

CS 4120 Introduction to Compilers 27

Iterative dataflow analysis

Initial assignment to in[n), out{n] is empty set @ : will not
satisfy constraints

in[n] 2 use[n]
in[n] 2 out[n] - def [n]
out[n] 2in[n’] if n’E succ [n]

Idea: iteratively re-compute in[n], out[n] when forced to by
constraints. Live variable sets will increase monotonically.

Dataflow equations:
in’[n] = use[n) U (out[n] - def [n])

Out’[n] = Un’esucc[n] in[n’]
CS 4120 Introduction to Compilers 26
Example
« For simplicity: pseudo-code 1
e=1| def: e
if x>0 use: X

SE/ARN

géﬁfg Jz=e’%e return x| use:
' -1/

use: e, X [y=d*

def:y y)é X

i

use: x yfx&1

2 // i use:y

__luse: z | €Y def:
©7Z] def: e def: e

CS 4120 Introduction to Compilers 28

Example ...
3: in={e}
1 4: in={x}
e=1| def: e 5: in={e,x}
¥ 6: in={x}
if x>0 use: X 7: out={x3}, in={x,z}
/ 8: out={x}, in={x,y}
3 4 1: out={x}, in={x}
z=e*e| | return x| use: x 2: out={e,x}, in={e,x}
- 3: out={e,x}, in={e,x}
p . . 5: out={x}, in={e,x}
y=€'X 32? 5’ x 6: out={x,y,z3, in={x,y,z}
I 7: out={e,x}, in={x,z}
- 8: out={e,x}, in={x,y}
if x&1| use: x 1: out={e,x}, in={x}
/ 5: out={x,y,z}, in={e,x,z}
. \Je-y e:y 3: out={e,x,z}, in={e,x}
T __luse: z - . all equations satisfied
e=z| 5% Z def: e q f
CS 4120 Introduction to Compilers 29
Worklist algorithm

« ldea: keep track of nodes that might need to be

updated in worklist : FIFO queue
for all n, in[n] = out[n] = @
w = { set of all nodes }
repeat until w empty

n = w.pop()

out[n] = U ey inn’]

in[n] = use[n] U (out[n] — def [n])

if change to in[n],

for all predecessors m of n, w.push(m)

end

CS 4120 Introduction to Compilers 31

Faster algorithm

« Information only propagates between
nodes because of this equation:

out[n] = U cgee (up inIN’]

« Node is updated from its successors

— If successors haven’t changed, no need to
apply equation for node

— Should start with nodes at “end” and work
backward

CS 4120 Introduction to Compilers 30

