
Iota9 Type System Specification

Computer Science 4120
Cornell University

Version of September 27, 2009

Changes

• September 27: Rule (TUPLEDECL) updated so underscores work. Rule (ARRAYDECL) now allows
arbitrary integer expressions as array lengths, as in the spec.

Types

The Iota9 type system uses a somewhat bigger set of types than can be expressed explicitly in the source
language:

τ ::= int

| bool
|
| τ[ ]
| (τ1, τ2, . . . , τn) (n≥2)

σ ::= var τ

| fn τ → τ ′

The type is how we will write the unit type, a type that does not appear explicitly in the source
language. The unit type is used to give a type to the left-hand side of pattern-matching assignments that
use the placeholder; this lets their handling be integrated directly into the type system. The type is also
used to represent the result type of procedures.

The set σ is used to represent typing environment entries, which can either be normal variables (bound
to var τ for some type τ ) or functions (bound to fn τ → τ ′ where τ ′ 6= ), or procedures (bound to fn τ → ),
where the “result type” ( ) indicates that the procedure result contains no information other than that the
procedure call terminated.

Subtyping

We use the following subtyping relation:

τ ≤ τ τ ≤

τ1 ≤ τc . . . τn ≤ τc
(τ1, . . . , τn) ≤ τc[ ]

τ1,a ≤ τ1,b . . . τn,a ≤ τn,b

(τ1,a, . . . , τn,a) ≤ (τ1,b, . . . , τn,b)

1



Type-checking expressions

To type-check expressions, we need to know what bound variables and functions are in scope; this is rep-
resented by the typing context Γ, which maps names x to types σ.

We define two typing judgment. The judgment Γ ` e : τ is the rule for the type of an expression; it states
that with bindings Γ we can conclude that e has the type τ . There is also another typing judgment, `u (read:
usable as), which indicates how to incorporate subtyping through the following subsumption rule:

Γ ` e : τ τ ≤ τ ′
Γ `u e : τ ′

We use the metavariable symbols x or f to represent arbitrary identifiers, n to represent a numeric
constant, string to represent a string constant, and char to represent a character constant. Using these
conventions, the expression typing rules are:

Γ ` n : int Γ ` true : bool Γ ` false : bool Γ ` string : int[ ] Γ ` char : int

Γ(x) = var τ

Γ ` x : τ
Γ `u e1 : int Γ `u e2 : int ⊕ ∈ {+,−, /, ∗,%}

Γ ` e1 ⊕ e2 : int

Γ `u e : int
Γ ` −e : int

Γ `u e1 : int Γ `u e2 : int 	 ∈ {==, ! =, <,<=, >,>=}
Γ ` e1 	 e2 : bool

Γ `u e : bool
Γ ` !e : bool

Γ `u e1 : bool Γ `u e2 : bool 	 ∈ {==, ! =,&, |}
Γ ` e1 	 e2 : bool

Γ `u e : τ[ ]
Γ ` length e : int

Γ `u e1 : τ[ ] Γ `u e2 : τ[ ] 	 ∈ {==, ! =}
Γ ` e1 	 e2 : bool

Γ ` e1 : τ1 . . . Γ ` en : τn n ≥ 2
Γ ` (e1, . . . , en) : (τ1, . . . , τn)

Γ ` e1 : τ[ ] Γ `u e2 : int
Γ ` e1 e2 : τ

Γ(f) = fn τ → τ ′ Γ `u e : τ
Γ ` f e : τ ′

Type-checking statements

To type-check statements, we need all the information used to type-check expressions, plus the types of
procedures, which are included in Γ. In addition, we extend the domain of Γ a little to include two special
symbols, ρ and β. To check the return statement we need to know what the return type of the current
function is or if it is a procedure. Let this be denoted by Γ(ρ), which is some type τ if the statement is part
of a function, or if the statement is in a procedure. For break statements, we also need to check whether
we are inside a loop, which we will denote as Γ(β), which is true if we are inside a loop and false if we
are not. Since statements include declarations, they can also produce new variable bindings, resulting in an
updated typing context which we will denote as Γ′. To update typing contexts, we write Γ[x 7→ τ ], which is
an environment exactly like Γ except that it maps x to τ . We use the metavariable s to denote a statement,
so the main typing judgment for statements has the form Γ ` s : Γ′. (The type of a statement, if we wanted
to give it one, would be .)

2



Most of the statements are fairly straightforward, and do not change Γ:

Γ ` e : bool Γ ` s : Γ′

Γ ` if (e) s : Γ
(IF)

Γ ` e : bool Γ ` s1 : Γ′ Γ ` s2,Γ′′

Γ ` if (e) s1 else s2 : Γ
(IFELSE)

Γ `; : Γ
(EMPTY)

Γ ` e : bool Γ[β 7→ true] ` s : Γ′

Γ ` while (e) s : Γ
(WHILE)

Γ ` s1 : Γ1 Γ1 ` s2 : Γ2 . . .Γn−1 ` sn : Γn

Γ ` {s1, s2, . . . , sn} : Γ
(SEQ)

Γ(f) = fn τ → Γ `u e : τ
Γ ` f e : Γ

(PRCALL)
Γ(β) = true

Γ ` break : Γ
(BREAK)

Γ(ρ) =
Γ ` return : Γ

(RETURN)
Γ(ρ) = τ 6= Γ `u e : τ

Γ ` return e : Γ
(RETVAL)

Assignments require checking the left-hand side to make sure it is assignable:

Γ(x) = var τ Γ `u e : τ
Γ ` x = e : Γ

(ASSIGN)
Γ ` e1 : τ[ ] Γ `u e2 : int Γ `u e3 : τ

Γ ` e1 e2 = e3 : Γ
(ARRASSIGN)

Declarations are the source of new bindings. Three kinds of declarations can appear in the source lan-
guage: regular variable declarations, tuple declarations, and function/procedure declarations. We are only
concerned with the first two kinds within a function body. To handle tuples, we define a declaration d that
can appear within a tuple:

d ::= x : τ |

and define functions typeof (d) and varsof (d) as follows: typeof (x : τ) = τ and typeof ( ) = , and varsof (x :
τ) = {x} and varsof ( ) = ∅. Using these notations, we have the following rules:

x 6∈ dom(Γ)
Γ ` x :τ : Γ[x 7→ τ ]

(VARDECL)
x 6∈ dom(Γ) Γ `u e : τ
Γ ` x :τ = e : Γ[x 7→ τ ]

(VARINIT)
x 6∈ dom(Γ) Γ `u e : int
Γ ` x :τ[e] : Γ[x 7→ τ[ ]]

(ARRAYDECL)

Γ ` e : (τ1, . . . , τn) τi ≤ typeof (di) (∀i∈1..n)

dom(Γ) ∩ varsof (di) = ∅ (∀i∈1..n) varsof (di) ∩ varsof (dj) = ∅ (∀i,j∈1..n|j 6=i)

Γ ` (d1, . . . , dn) = e : Γ[xi 7→ typeof (di) (∀i∈1..n,xi | varsof (di)={xi})]
(TUPLEDECL)

The final premise in rule TUPLEDECL prevents shadowing by ensuring that dom(Γ) and all of the varsof (di)
are disjoint from each other.

Top-level declarations

At the top level of the program, we need to figure out the types of procedures and functions, and make sure
their bodies are well-typed. Since mutual recursion is supported, this needs to be done in two passes. First,
we use the judgment Γ ` fd : Γ′ to state that the function or procedure declaration fd extends top-level
bindings Γ to Γ′:

f 6∈ dom(Γ)
Γ ` f(x :τ) : τ ′ = s : Γ[f 7→ fn τ → τ ′]

f 6∈ dom(Γ) n ≥ 2 Γ′ = Γ[f 7→ fn (τ1, τ2, . . . , τn)→ τr]
Γ ` f(x1 :τ1, x2 :τ2, . . . , xn :τn) : τr = s : Γ′

f 6∈ dom(Γ)
Γ ` f(x :τ) = s : Γ[f 7→ fn τ → ]

f 6∈ dom(Γ) n ≥ 2 Γ′ = Γ[f 7→ fn (τ1, τ2, . . . , τn)→ ]
Γ ` f(x1 :τ1, x2 :τ2, . . . , xn :τn) = s : Γ′

3



The second pass over the program is captured by the judgment Γ ` fd decl, which defines how to check
well-formedness of each function definition against a top-level environment Γ, ensuring that parameters
do not shadow anything and that the body is well-typed. We treat procedures just like functions that return
the unit type:

x 6∈ dom(Γ) Γ[x 7→ τ, ρ 7→ τ ′, β 7→ false] ` s : Γ′

Γ ` f(x :τ) : τ ′ = s decl

|dom(Γ) ∪ {x1, . . . , xn}| = |dom(Γ)| + n
Γ[x1 7→ τ1, . . . , xn 7→ τn, ρ 7→ τ ′, β 7→ false] ` s : Γ′

Γ ` f(x1 :τ1, . . . , xn :τn) : τ ′ = s decl

x 6∈ dom(Γ) Γ[x 7→ τ, ρ 7→ , β 7→ false] ` s : Γ′

Γ ` f(x :τ) = s decl

|dom(Γ) ∪ {x1, . . . , xn}| = |dom(Γ)| + n
Γ[x1 7→ τ1, . . . , xn 7→ τn, ρ 7→ , β 7→ false] ` s : Γ′

Γ ` f(x1 :τ1, . . . , xn :τn) = s decl

Checking a program

Using the previous judgments, we can define when an entire program fd1 . . . fdn is well-formed, written
` fd1 . . . fdn prog:

∅ ` d1 : Γ1 Γ1 ` d2 : Γ2 . . . Γn ` dn : Γ
Γ ` d1 decl Γ ` d2 decl . . . Γ ` dn decl

` fd1 fd2 . . . fdn prog

4


