CS412/CS5413

Introduction to Compilers
Tim Teitelbaum

Lecture 22: Implementing Objects
12 March 08

CS 412/413 Spring 2008 Introduction to Compilers

Classes

e Components
— fields/instance variables
 values differ from object to object
e usually mutable

— methods
 values shared by all objects of a class
e usually immutable

— component visibility: public/private/protected

CS 412/413 Spring 2008 Introduction to Compilers

Code Generation for Objects

e Methods
— Generating method code
— Generating method calls (dispatching)
— Constructors and destructors

e Flelds

— Memory layout
— Generating code to access fields
— Field alignment

CS 412/413 Spring 2008 Introduction to Compilers

Compiling Methods

e Methods look like functions, are type-checked like
functions...what is different?

e Argument list: implicit receiver argument

e Calling sequence: use dispatch vector instead of
jumping to absolute address

CS 412/413 Spring 2008 Introduction to Compilers

The Need for Dispatching

e Example:
Interface Point {
int getx(); int gety(); float norm(); }
class ColoredPoint implements Point {...
float norm() { return sqrt(x*x+y*y); }
class 3DPoint implements Point { ...
float norm() { return sqrt(x*x+y*y+z*z); }

Point p;
If (cond) p = new ColoredPoint();
else P = new 3DPoint();

float n = p.norm();

e Compiler can’t tell what code to run when method is called!

CS 412/413 Spring 2008 Introduction to Compilers

Dynamic Dispatch

e Solution: dispatch vector (dispatch table, selector table...)
— Entries in the table are pointers to method code
— Method entry point is computed dynamically!

— If T <! S, then vector for objects of type S is a prefix of
vector for objects of type T

object object dispatch
reference layout vector
p > ® > getx
| gety
|
I
I

CS 412/413 Spring 2008

Introduction to Compilers

|
|
|
| norm *— norm !
|
|

method
code

Why It Works

e IfS<:Tandfisamethod of an object of type T, then

— Objects of type S inherit f; f can be overridden by S

— Pointer to f has same index in the DV for type T and S!
« Statically generate code to look up pointer to method f
e Pointer values determined dynamically

Point 3DPoint 3DPoint 3DPoint

reference layout vector code
p > ® > getx
X gety

getz

N <<

CS 412/413 Spring 2008 Introduction to Compilers

Dispatch Vector Lookup

e Every method has its own integer index
e Index is used to look up method in dispatch vector

C<:B<:A
A f
|
B f,g,h
|
C f,g,h,e

CS 412/413 Spring 2008

Interface A {
void f(); 0

¥

class B implements A {
voidfO) {..} O

void g0) {..} 1
void h() {..} 2

}

class C extends B {
voide() {...} 3

}

Introduction to Compilers 8

Dispatch Vector Layouts

Index of f is the same in any

object of type T <: A — .

Methods may have multiple A

Implementations

e For subclasses with N .

unrelated types
e |f subclass overrides

method

o [Q

To execute a method i:
e Lookup entry i in vector C

e Execute code pointed to by
entry value

CS 412/413 Spring 2008 Introduction to Compilers

D | IQ |—h

N O

wWwnN PO

Code Generation: Dispatch Vectors

Allocate one dispatch vector per class
— Objects of same class execute same method code

Statically allocate dispatch vectors

4t

CS 412/413 Spring 2008 Introduction to Compilers (\b % 10

Interfaces, Abstract Classes

Classes define a type and some values (methods)

Interfaces are pure object types : no implementation
— no dispatch vector: only a DV layout

Abstract classes are halfway:
— define some methods
— leave others unimplemented

— no objects (instances) of abstract class

DV needed only for concrete classes

CS 412/413 Spring 2008 Introduction to Compilers

11

Method Arguments

Methods have a special variable (Java, C++: this) called the
receiver object

Historically (Smalltalk): method calls thought of as messages
sent to receivers

Receiver object is (implicit) argument to method

class A {
int f(int x, inty) | [eomniie a> int f(A this, int x, int y)
{..} 1}

CS 412/413 Spring 2008 Introduction to Compilers 12

Static Methods

In Java, can declare methods static
— they have no receiver object

Called exactly like normal functions
— don’t need to call via dispatch vector
— don’t need implicit extra argument for receiver

Treated as methods as way of getting functions inside the
class scope (access to module internals for semantic
analysis)

Not really methods

CS 412/413 Spring 2008 Introduction to Compilers

13

Code Generation: Method Calls

e Code for function calls: pre-call + post-call code

e Pre-function-call code:
— Save regqisters
— Push parameters

e Pre-method call:
— Save registers
— Push parameters
— Push receiver object reference
— Lookup method in dispatch vector

CS 412/413 Spring 2008 Introduction to Compilers

14

Example

push $3
0.foo(2,3); > push $2
push %eax
mov (Yoeax), %oebx
eax ebx [ebx+4] call *4(%ebx)
| add $12, %esp
’ fooe—
foo
___________ code
(object) (DV) (code)
CS 412/413 Spring 2008 Introduction to Compilers 15

Object Layout

e Object consists of:
— Methods
— Fields

e Object layout consists of:
— Pointer to DV, which contains pointers to methods

— Flelds layout (static data) (code)
M

DVe | getXe " getx

X gety « code

y —

\k |

gety

code

bt

CS 412/413 Spring 2008 Introduction to Compilers

Allocation of Objects

e Objects can be stack- or heap-allocated

e Stack allocation: (stack) (static data)

(C++) Point p; DVe » getx

X gety

y

e Heap:

(C++) (stack) (heap) (static data)
Point *p = new Point; D ° S DVe [getx
(Java) X gety
Point p = new Point(); y

CS 412/413 Spring 2008 Introduction to Compilers 17

Inheritance and ODbject Layout

e Method code copied down from superclass if not overridden
by subclass

e Fields also inherited (needed by inherited code in general)

e Inheritance: add fields, methods
— Extend layout
— Extend dispatch vector

— A supertype object can be used whenever a subtype
object can be used

CS 412/413 Spring 2008 Introduction to Compilers 18

Inheritance and ODbject Layout

class Shape {
Point LL, UR;
void setCorner(int which, Point p);
by
class ColoredRect extends Shape {
Int color;
void setColor(int col);

}

— DV e " setCorner| — DV e » setCorner
LL: Point LL: Point | : setColor :
UR: Point UR: Point
Shape :__(_:_Q!(_)_I::__I_r_]._t__:

ColoredRect
CS 412/413 Spring 2008 Introduction to Compilers 19

— DV ®

— DV °

Code Sharing

LL: Point

UR: Point

A

Machine code for

A 4

setCornerse

Y

LL: Point

UR: Point

color: int

CS 412/413 Spring 2008

setCorner

setColor

Shape.setCorner

e Don’t actually copy code!

e \Works with separate
compilation: can inherit
without superclass source

Introduction to Compilers 20

Field Offsets

e Offsets of fields from beginning of object known statically,

same for all subclasses

e Example:

class Shape {
Point LL /* 4 */ , UR; /* 8 */
void setCorner(int which, Point p);

class ColoredRect extends Shape {
Color c; /* 12 */
void setColor(Color c);

}

e Offsets known for stack and heap allocated objects

CS 412/413 Spring 2008 Introduction to Compilers

21

Field Alignment

e In many processors, a 32-bit load must be to an address
divisible by 4, address of 64-bit load must be divisible by 8

e Inrest (e.g., Pentium), loads are 10x faster if aligned --
avoids extra load

— Fields should be aligned X
C

y
struct { d

Int X; char c; inty; char d; 7

Int z; double e:

}

CS 412/413 Spring 2008 Introduction to Compilers

Accessing Fields

Access fields of current object

— Access X equivalent to this.x

— Current method has “this” as argument
Access fields of other objects

— Access of the form 0.x

In both cases:
— Use pointer to object
— Add offset to the field

Access 0.x depends on the kind of allocation of o
— Stack allocation: stack access (%epb + stack offset)
— Heap allocation: stack access + dereference

CS 412/413 Spring 2008 Introduction to Compilers

23

Code Generation: Allocation

e Heap allocation: o = new LenList() push $16 # 3 fields+DV
— Allocate heap space for object call _GC_malloc

— Store pointer to dispatch vector | mov $LenList_DV, (%oeax)
add $4, %esp

mov $eax, disp,(%oebp)

= Stack allocation: sub $16, %esp # 3 fields+DV
— Push object on stack mov $LenList_ DV, -4(%ebp)

— Pointer to DV on stack

CS 412/413 Spring 2008 Introduction to Compilers 24

Cconstructors

e Java, C++: classes can declare object constructors that
Initialize new objects:
class LenList {
Int len;
Cell head, tall;
LenList() { len =0; }
}

new LenList();
e Need to know when objects are constructed

— Heap: new statement

— Stack: at the beginning of their scope (blocks for locals,
procedures for arguments, program for globals)

CS 412/413 Spring 2008 Introduction to Compilers 25

Compliling Constructors

e Compiled like methods:
— pseudo-variable “this” passed to constructor
— return value is “this”

0 = new LenList(); LenList() { len =0; }

LenList$constructor:
push %ebp
mov %esp,%ebp

push $1 # 3 fields+DV
call _GC_malloc

mov $LenList DV, (Y%eax)
add $4, %esp mov 8(%ebp), eax
push %eax mov $0, 4(%eax)
call LenList$constructor
add $4, %esp

mov %exa, disp,(%oebp)

mov %ebp,%esp
pop %ebp
ret

CS 412/413 Spring 2008 Introduction to Compilers 26

Destructors

 |In some languages (e.g., C++), objects can also
declare code to execute when objects are destructed

e Heap: when invoking delete (explicit de-allocation)
e Stack: when scope of variables ends

— End of blocks for local variables

— End of program for global variables

— End of procedure for function arguments

CS 412/413 Spring 2008 Introduction to Compilers

27

Analysis and Optimizations

Dataflow analysis reasons about variables and values

Records (objects) consist of a collection of variables (fields) —
analysis must separately keep track of individual fields

Difficult analysis for heap-allocated objects
— Object lifetime outlives procedure lifetime

— Need to perform inter-procedural analysis

Constructors/destructors: must take their effects into account

CS 412/413 Spring 2008 Introduction to Compilers 28

Class Hierarchy Analysis

Method calls = dynamic, via dispatch vectors

— Overhead of going through DV

— Prohibits function inlining

— Makes other inter-procedural analyses less precise

Static analysis of dynamic method calls
— Determine possible methods invoked at each call site

— Need to determine principal types of objects at each
program point (Class Hierarchy Analysis)

— If analysis determines object o is always of type T (not
subtype), then it precisely knows the code for 0.foo()

Optimizations: transform dynamic method calls into static
calls, inline method calls

CS 412/413 Spring 2008 Introduction to Compilers 29

Summary

Method dispatch accomplished using dispatch vector, implicit
method receiver argument

No dispatch of static methods needed

Inheritance causes extension of fields as well as methods;
code can be shared

Field alignment: declaration order matters!

Each real class has a single dispatch vector in data segment:
Installed at object creation or constructor

Analysis more difficult in the presence of objects
Class hierarchy analysis = precisely determine object class

CS 412/413 Spring 2008 Introduction to Compilers 30

	CS412/CS413
	Classes
	Code Generation for Objects
	Compiling Methods
	The Need for Dispatching
	Dynamic Dispatch
	Why It Works
	Dispatch Vector Lookup
	Dispatch Vector Layouts
	Code Generation: Dispatch Vectors
	Interfaces, Abstract Classes
	Method Arguments
	Static Methods
	Code Generation: Method Calls
	Example
	Object Layout
	Allocation of Objects
	Inheritance and Object Layout
	Inheritance and Object Layout
	Code Sharing
	Field Offsets
	Field Alignment
	Accessing Fields
	Code Generation: Allocation
	Constructors
	Compiling Constructors
	Destructors
	Analysis and Optimizations
	Class Hierarchy Analysis
	Summary

