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Classes

e Components
— fields/instance variables
 values differ from object to object
e usually mutable

— methods
 values shared by all objects of a class
e usually immutable

— component visibility: public/private/protected
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Code Generation for Objects

e Methods
— Generating method code
— Generating method calls (dispatching)
— Constructors and destructors

e Flelds

— Memory layout
— Generating code to access fields
— Field alignment

CS 412/413 Spring 2008 Introduction to Compilers



Compiling Methods

e Methods look like functions, are type-checked like
functions...what is different?

e Argument list: implicit receiver argument

e Calling sequence: use dispatch vector instead of
jumping to absolute address
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The Need for Dispatching

e Example:
Interface Point {
int getx(); int gety(); float norm(); }
class ColoredPoint implements Point {...
float norm() { return sqrt(x*x+y*y); }
class 3DPoint implements Point { ...
float norm() { return sqrt(x*x+y*y+z*z); }

Point p;
If (cond) p = new ColoredPoint();
else P = new 3DPoint();

float n = p.norm();

e Compiler can’t tell what code to run when method is called!
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Dynamic Dispatch

e Solution: dispatch vector (dispatch table, selector table...)
— Entries in the table are pointers to method code
— Method entry point is computed dynamically!

— If T <! S, then vector for objects of type S is a prefix of
vector for objects of type T

object object dispatch
reference layout vector
p > ® > getx
| gety
|
I
I
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Why It Works

e IfS<:Tandfisamethod of an object of type T, then

— Objects of type S inherit f; f can be overridden by S

— Pointer to f has same index in the DV for type T and S!
« Statically generate code to look up pointer to method f
e Pointer values determined dynamically

Point 3DPoint 3DPoint 3DPoint

reference layout vector code
p > ® > getx
X gety

getz

N <<

CS 412/413 Spring 2008 Introduction to Compilers



Dispatch Vector Lookup

e Every method has its own integer index
e Index is used to look up method in dispatch vector

C<:B<:A
A f
|
B f,g,h
|
C f,g,h,e
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Interface A {
void f(); 0

¥

class B implements A {
voidfO) {..} O

void g0) {..} 1
void h() {..} 2

}

class C extends B {
voide() {...} 3

}
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Dispatch Vector Layouts

Index of f is the same in any

object of type T <: A — .

Methods may have multiple A

Implementations

e For subclasses with N .

unrelated types
e |f subclass overrides

method

o [Q

To execute a method i:
e Lookup entry i in vector C

e Execute code pointed to by
entry value
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Code Generation: Dispatch Vectors

Allocate one dispatch vector per class
— Objects of same class execute same method code

Statically allocate dispatch vectors

4t
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Interfaces, Abstract Classes

Classes define a type and some values (methods)

Interfaces are pure object types : no implementation
— no dispatch vector: only a DV layout

Abstract classes are halfway:
— define some methods
— leave others unimplemented

— no objects (instances) of abstract class

DV needed only for concrete classes
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Method Arguments

Methods have a special variable (Java, C++: this) called the
receiver object

Historically (Smalltalk): method calls thought of as messages
sent to receivers

Receiver object is (implicit) argument to method

class A {
int f(int x, inty) | [eomniie a> int f(A this, int x, int y)
{..} 1}
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Static Methods

In Java, can declare methods static
— they have no receiver object

Called exactly like normal functions
— don’t need to call via dispatch vector
— don’t need implicit extra argument for receiver

Treated as methods as way of getting functions inside the
class scope (access to module internals for semantic
analysis)

Not really methods
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Code Generation: Method Calls

e Code for function calls: pre-call + post-call code

e Pre-function-call code:
— Save regqisters
— Push parameters

e Pre-method call:
— Save registers
— Push parameters
— Push receiver object reference
— Lookup method in dispatch vector
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Example

push $3
0.foo(2,3); > push $2
push %eax
mov (Yoeax), %oebx
eax ebx  [ebx+4] call *4(%ebx)
| add $12, %esp
’ fooe—
foo
___________ code
(object) (DV) (code)
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Object Layout

e Object consists of:
— Methods
— Fields

e Object layout consists of:
— Pointer to DV, which contains pointers to methods

— Flelds layout (static data) (code)
M

DVe | getXe " getx

X gety « code

y —

\k |

gety

code

bt
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Allocation of Objects

e Objects can be stack- or heap-allocated

e Stack allocation: (stack)  (static data)

(C++) Point p; DVe » getx

X gety

y

e Heap:

(C++) (stack) (heap) (static data)
Point *p = new Point; D ° S DVe [ getx
(Java) X gety
Point p = new Point(); y
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Inheritance and ODbject Layout

e Method code copied down from superclass if not overridden
by subclass

e Fields also inherited (needed by inherited code in general)

e Inheritance: add fields, methods
— Extend layout
— Extend dispatch vector

— A supertype object can be used whenever a subtype
object can be used
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Inheritance and ODbject Layout

class Shape {
Point LL, UR;
void setCorner(int which, Point p);
by
class ColoredRect extends Shape {
Int color;
void setColor(int col);

}

— DV e " setCorner| — DV e » setCorner
LL: Point LL: Point | : setColor :
UR: Point UR: Point
Shape :__(_:_Q!(_)_I::__I_r_]._t__:

ColoredRect
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— DV ®

— DV °

Code Sharing

LL: Point

UR: Point

A

Machine code for

A 4

setCornerse

Y

LL: Point

UR: Point

color: int
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setCorner

setColor

Shape.setCorner

e Don’t actually copy code!

e \Works with separate
compilation: can inherit
without superclass source
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Field Offsets

e Offsets of fields from beginning of object known statically,

same for all subclasses

e Example:

class Shape {
Point LL /* 4 */ , UR; /* 8 */
void setCorner(int which, Point p);

class ColoredRect extends Shape {
Color c; /* 12 */
void setColor(Color c );

}

e Offsets known for stack and heap allocated objects
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Field Alignment

e In many processors, a 32-bit load must be to an address
divisible by 4, address of 64-bit load must be divisible by 8

e Inrest (e.g., Pentium), loads are 10x faster if aligned --
avoids extra load

— Fields should be aligned X
C

y
struct { d

Int X; char c; inty; char d; 7

Int z; double e:

}
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Accessing Fields

Access fields of current object

— Access X equivalent to this.x

— Current method has “this” as argument
Access fields of other objects

— Access of the form 0.x

In both cases:
— Use pointer to object
— Add offset to the field

Access 0.x depends on the kind of allocation of o
— Stack allocation: stack access (%epb + stack offset)
— Heap allocation: stack access + dereference
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Code Generation: Allocation

e Heap allocation: o = new LenList() push $16 # 3 fields+DV
— Allocate heap space for object call _GC_malloc

— Store pointer to dispatch vector | mov $LenList_DV, (%oeax)
add $4, %esp

mov $eax, disp,(%oebp)

= Stack allocation: sub $16, %esp # 3 fields+DV
— Push object on stack mov $LenList_ DV, -4(%ebp)

— Pointer to DV on stack
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Cconstructors

e Java, C++: classes can declare object constructors that
Initialize new objects:
class LenList {
Int len;
Cell head, tall;
LenList() { len =0; }
}

new LenList();
e Need to know when objects are constructed

— Heap: new statement

— Stack: at the beginning of their scope (blocks for locals,
procedures for arguments, program for globals)
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Compliling Constructors

e Compiled like methods:
— pseudo-variable “this” passed to constructor
— return value is “this”

0 = new LenList(); LenList() { len =0; }

LenList$constructor:
push %ebp
mov %esp,%ebp

push $1 # 3 fields+DV
call _GC_malloc

mov $LenList DV, (Y%eax)
add $4, %esp mov 8(%ebp), eax
push %eax mov $0, 4(%eax)
call LenList$constructor
add $4, %esp

mov %exa, disp,(%oebp)

mov %ebp,%esp
pop %ebp
ret

CS 412/413 Spring 2008 Introduction to Compilers 26



Destructors

 |In some languages (e.g., C++), objects can also
declare code to execute when objects are destructed

e Heap: when invoking delete (explicit de-allocation)
e Stack: when scope of variables ends

— End of blocks for local variables

— End of program for global variables

— End of procedure for function arguments
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Analysis and Optimizations

Dataflow analysis reasons about variables and values

Records (objects) consist of a collection of variables (fields) —
analysis must separately keep track of individual fields

Difficult analysis for heap-allocated objects
— Object lifetime outlives procedure lifetime

— Need to perform inter-procedural analysis

Constructors/destructors: must take their effects into account
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Class Hierarchy Analysis

Method calls = dynamic, via dispatch vectors

— Overhead of going through DV

— Prohibits function inlining

— Makes other inter-procedural analyses less precise

Static analysis of dynamic method calls
— Determine possible methods invoked at each call site

— Need to determine principal types of objects at each
program point (Class Hierarchy Analysis)

— If analysis determines object o is always of type T (not
subtype), then it precisely knows the code for 0.foo()

Optimizations: transform dynamic method calls into static
calls, inline method calls
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Summary

Method dispatch accomplished using dispatch vector, implicit
method receiver argument

No dispatch of static methods needed

Inheritance causes extension of fields as well as methods;
code can be shared

Field alignment: declaration order matters!

Each real class has a single dispatch vector in data segment:
Installed at object creation or constructor

Analysis more difficult in the presence of objects
Class hierarchy analysis = precisely determine object class
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