
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 21: Generating Pentium Code
10 March 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Simple Code Generation
• Three-address code makes it easy to generate assembly

– Complex expressions in the input program already lowered to
sequences of simple IR instructions

– Just need to translate each low IR instruction into a sequence of
assembly instructions

e.g. a = p+q mov 16(%ebp), %ecx
add 8(%ebp), %ecx
mov %ecx, -8(%ebp)

• Need to consider many language constructs:
– Operations: arithmetic, logic, comparisons
– Accesses to local variables, global variables
– Array accesses, field accesses
– Control flow: conditional and unconditional jumps
– Method calls, dynamic dispatch
– Dynamic allocation (new)
– Run-time checks

CS 412/413 Spring 2008 Introduction to Compilers 3

x86 Quick Overview

• Registers:
– General purpose 32bit: eax, ebx, ecx, edx, esi, edi

• Also 16-bit: ax, bx, etc., and 8-bit: al, ah, bl, bh, etc.
– Stack registers: esp, ebp

• Instructions:
– Arithmetic: add, sub, inc, mod, idiv, imul, etc.
– Logic: and, or, not, xor
– Comparison: cmp, test
– Control flow: jmp, jcc, jecz
– Function calls: call, ret
– Data movement: mov (many variants)
– Stack manipulations: push, pop
– Other: lea

CS 412/413 Spring 2008 Introduction to Compilers 4

Big Picture of Program Memory

Previous fp

Local 1

Local n
…

Global 1

Global n
…

Param n

Param 1

Return address

…

Heap
variables

Global
(static)

variables

Stack
variables

CS 412/413 Spring 2008 Introduction to Compilers 5

Memory Layout

Code

Locals,
parameters

Static area

Stack

Object fields,
arrays

Globals,
Static data

Heap

low

high

CS 412/413 Spring 2008 Introduction to Compilers 6

Accessing Stack Variables

• To access stack variables:
use offsets from ebp

• Example:
8(%ebp) = parameter 1
12(%ebp) = parameter 2
-4(%ebp) =local 1

Param n

Param 1

Return address
Previous fp

…

Local 1

Local n
…

ebp

Param 1

Param n

…

esp

ebp+8

ebp-4

ebp+…

CS 412/413 Spring 2008 Introduction to Compilers 7

Accessing Stack Variables
• Translate accesses to variables:

– For parameters, compute offset from %ebp using:
• Parameter number
• Sizes of other parameters

– For local variables, decide on data layout and assign offsets
from frame pointer to each local

– Store offsets in the symbol table
– Keep track of high-water mark for frame allocation

• Example:
– a: local, offset-4
– p: parameter, offset+16, q: parameter, offset+8
– Assignment a = p + q becomes equivalent to:

-4(%ebp) = 16(%ebp) + 8(%ebp)
– How to write this in assembly?

CS 412/413 Spring 2008 Introduction to Compilers 8

Arithmetic
• How to translate: p+q ?

– Assume p and q are locals or parameters
– Determine offsets for p and q
– Perform the arithmetic operation

• Problem: the ADD instruction in x86 cannot take both operands
from memory; notation for possible operands:
– mem32: register or memory 32 bit (similar for r/m8, r/m16)
– reg32: register 32 bit (similar for reg8, reg16)
– imm32: immediate 32 bit (similar for imm8, imm16)
– At most one operand can be mem !

• Translation requires using an extra register
– Place p into a register (e.g. %ecx): mov 16(%ebp), %ecx
– Perform addition of q and %ecx: add 8(%ebp), %ecx

CS 412/413 Spring 2008 Introduction to Compilers 9

Data Movement
• Translate a = p+q:

– Load memory location (p) into register (%ecx) using a move instr.
– Perform the addition
– Store result from register into memory location (a):

mov 16(%ebp), %ecx (load)
add 8(%ebp), %ecx (arithmetic)
mov %ecx, -8(%ebp) (store)

• Move instructions cannot have two memory operands
Therefore, copy instructions must be translated using an extra register:

a = p ⇒ mov 16(%ebp), %ecx
mov %ecx, -8(%ebp)

• However, loading constants doesn’t require extra registers:
a = 12 ⇒ mov $12, -8(%ebp)

CS 412/413 Spring 2008 Introduction to Compilers 10

Accessing Global Variables
• Global (static) variables and constants not stack allocated
• Have fixed addresses throughout the execution of the program

– Compile-time known addresses (relative to the base address where
program is loaded)

– Hence, can directly refer to these addresses using symbolic names in
the generated assembly code

• Example: string constants

str: .string “Hello world!“

– The string will be allocated in the static area of the program
– Here, “str” is a label representing the address of the string
– Can use $str as a constant in other instructions:

push $str

CS 412/413 Spring 2008 Introduction to Compilers 11

Accessing Heap Data
• Heap data allocated with new (Java) or malloc (C/C++)

– Such allocation routines return address of allocated data
– References to data stored into local variables
– Access heap data through these references

• Array accesses in language with dynamic array size
– access a[i] requires:

• Compute address of element: a + i * size
• Access memory at that address

– Can use indexed memory accesses to compute addresses
– Example: assume size of array elements is 4 bytes, and local variables

a, i (offsets –4, -8)

a[i] = 1 mov –4(%ebp), %ebx (load a)
mov –8(%ebp), %ecx (load i)
mov $1, (%ebx,%ecx,4) (store into the heap)

CS 412/413 Spring 2008 Introduction to Compilers 12

Control-Flow
• Label instructions

– Simply translated as labels in the assembly code
– E.g., label2: mov $2, %ebx

• Unconditional jumps:
– Use jump instruction, with a label argument
– E.g., jmp label2

• Conditional jumps:
– Translate conditional jumps using test/cmp instructions:
– E.g., tjump b L cmp %ecx, $0

jnz L
where %ecx hold the value of b, and we assume booleans are
represented as 0=false, 1=true

CS 412/413 Spring 2008 Introduction to Compilers 13

Run-time Checks
• Run-time checks:

– Check if array/object references are non-null
– Check if array index is within bounds

• Example: array bounds checks:
– if v holds the address of an array, insert array bounds checking

code for v before each load (…=v[i]) or store (v[i] = …)
– Assume array length is stored just before array elements:

cmp $0, -12(%ebp) (compare i to 0)

jl ArrayBoundsError (test lower bound)

mov –8(%ebp), %ecx (load v into %ecx)

mov –4(%ecx), %ecx (load array length into %ecx)

cmp –12(%ebp), %ecx (compare i to array length)

jle ArrayBoundsError (test upper bound)

. . .

CS 412/413 Spring 2008 Introduction to Compilers 14

X86 Assembly Syntax
• Two different notations for assembly syntax:

– AT&T syntax and Intel syntax
– In the examples: AT&T syntax

• Summary of differences:

Order of operands op a, b : b is destination op a, b : a is destination

Memory addressing disp(base,offset,scale) [base + offset*scale + disp]

Size of memory
operands

instruction suffixes (b,w,l)
(e.g., movb, movw, movl)

operand prefixes
(byte ptr, word ptr, dword ptr)

Registers %eax, %ebx, etc. eax, ebx, etc.

Constants $4, $foo, etc 4, foo, etc

	CS412/CS413
	Simple Code Generation
	x86 Quick Overview
	Big Picture of Program Memory
	Memory Layout
	Accessing Stack Variables
	Accessing Stack Variables
	Arithmetic
	Data Movement
	Accessing Global Variables
	Accessing Heap Data
	Control-Flow
	Run-time Checks
	X86 Assembly Syntax

