CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 9: LR Parsing February 9, 2007

CS 412/413 Spring 2007

Introduction to Compilers

LR(k) Grammars

- LR(k) = Left-to-right scanning, Right-most derivation, k look-ahead characters
- Main cases: LR(0), LR(1), SLR(k), and LALR(1)
- Parsers for LR(0) Grammars:
 - Know whether to shift or reduce without consulting the lookahead symbol
 - Give intuition and techniques relevant for creating parsers for all grammar classes to be considered

CS 412/413 Spring 2007

Introduction to Compilers

Building LR(0) Parsing Tables

- · To build the parsing table:
 - Define states of the parser
 - Build a DFA to describe the transitions between states
 - Use the DFA to build the parsing table

CS 412/413 Spring 2007

Introduction to Compilers

Viable Prefix

• γ is a viable prefix for G iff there is some derivation

 $S \Rightarrow^* \alpha Az \Rightarrow \alpha \beta z$ where γ is a prefix of $\alpha \beta$

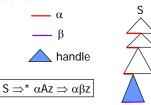
 {γ | γ is a viable prefix of G} is a regular language, i.e., it can be recognized by a DFA known as the Canonical LR(0) Machine

CS 412/413 Spring 2007

Introduction to Compilers

Viable Prefix (Informally)

 γ is a viable prefix for G if it is a prefix of a sentential form derived from S that does not extend past the end of the handle of the sentential form.



CS 412/413 Spring 2007

Introduction to Compilers

LR(0) Items

• An LR(0) item for G is a triple $\langle A, \beta_1, \beta_2 \rangle$ such that $A \rightarrow \beta_1 \beta_2$ is a production of G. The item $\langle A, \beta_1, \beta_2 \rangle$ is denoted by $[A \rightarrow \beta_1.\beta_2]$

CS 412/413 Spring 2007

Introduction to Compilers

Validity of LR(0) Items

- The item [A \rightarrow β_1 , β_2] is valid for viable prefix $\alpha\beta_1$ iff S $\Rightarrow^* \alpha Az \Rightarrow \alpha\beta_1\beta_2z$
- Note:
 - β_1 may be ϵ
 - β_2 may be ϵ
- For any viable prefix α, let V(α) denote the set of LR(0) items that are valid for α.

CS 412/413 Spring 2007

Introduction to Compilers

Sets of Valid Items

- Observations
 - There are only finitely many distinct LR(0) items for a given G.
 - Thus, there are only finitely many sets of LR(0) items for G.
- Sets of valid items for viable prefixes of G will serve as the states of a DFA, i.e., the canonical LR(0) machine.

CS 412/413 Spring 2007

Introduction to Compilers

Relation ↓

The relation ↓ on LR(0) items is defined by I ↓ I' iff ∃ A,
 B, β₁, β₂, β₃ such that

$$I = [A \rightarrow \beta_1.B\beta_3]$$

$$I' = [B \rightarrow .\beta_2]$$

- Lemma. Let I, I' be as above. If $I \in V(\alpha\beta_1)$ and $I \downarrow I'$, then $I' \in V(\alpha\beta_1)$.
 - I ∈ V(αβ₁) implies S ⇒* αAz ⇒ αβ₁Bβ₃z
 - Assuming G has no useless productions, $\exists y$ such that $\beta_3 {\Rightarrow^\star} y$
 - Thus, $S \Rightarrow^* \alpha Az \Rightarrow \alpha \beta_1 B \beta_3 z \Rightarrow^* \alpha \beta_1 B yz \Rightarrow \alpha \beta_1 \beta_2 yz$
 - Thus, I' (i.e., $[B \rightarrow .\beta_2]$) $\in V(\alpha\beta_1)$

CS 412/413 Spring 2007

Introduction to Compilers

Relation \rightarrow_x

• For any $X \in (V \cup \Sigma)$, the relation \rightarrow_X is defined by $I \rightarrow_X I'$ iff $\exists A, \beta_1, \beta_3$ such that

$$I = [A \rightarrow \beta_1.X\beta_3]$$

$$I' = [A \rightarrow \beta_1 X.\beta_3]$$

 $\bullet \quad \underline{\text{Lemma}}. \text{ Let I, I' be as above. If I} \in V(\alpha\beta_1) \text{ then I'} \in V(\alpha\beta_1X).$

$$\begin{array}{ll} - & I = [A \to \beta_1.X\beta_3] \in V(\alpha\beta_1) \text{ implies} \\ S \Rightarrow^* & \alpha Az \Rightarrow \alpha\beta_1X\beta_3z \end{array}$$

which by definition means I' (= [A $\rightarrow \beta_1 X.\beta_3])$ \in V($\alpha\beta_1 X)$

CS 412/413 Spring 2007

Introduction to Compilers

Technical Details

- · Start symbol never appears on RHS
 - It is convenient if the start symbol never appears on the RHS of any production.
 - Given G = $\langle V, \Sigma, S, \rightarrow \rangle$, let $S' \notin V$ and

$$\mathsf{G}' = \langle \mathsf{V},\! \Sigma,\! \mathsf{S}',\! \to \cup \; \{\mathsf{S}'\!\!\to\!\! \mathsf{S}\} \rangle$$

- Assume that the grammars we work with have the form of G'.
- If S is a set and R is a relation, then

$$SR = \{y \mid x \in S \text{ and } \langle x, y \rangle \in R\}$$

SR is called S mapped by R

CS 412/413 Spring 2007

Introduction to Compilers

11

 $V(\varepsilon)$, the base case

- Let S^{\prime} be the start symbol of G. Then

- V(ε) = { [S'→.S] } \downarrow^*

(i.e., the "initial item" of G {[S' \rightarrow .S]} mapped by the reflexive transitive closure of the \downarrow relation.)

If Q is a set of items, we call Q↓* the closure(Q).

CS 412/413 Spring 2007

Introduction to Compilers

2

12

$V(\alpha X)$, the inductive case

- For any α and X, $V(\alpha X) = V(\alpha) \rightarrow_X \downarrow^*$
- For any set Q of items, we call Q→_x↓^{*} the X-successor of Q, or Goto(Q,X).

CS 412/413 Spring 2007

Introduction to Compilers

13

15

17

Canonical LR(0) Machine

- · States: Sets of valid items
- · Transition function: Goto, as defined above.
- · Algorithm: To compute all sets of valid items

STATES := $V(\varepsilon)$ while $\exists \ Q \in STATES$, $X \in (V \cup \Sigma)$ such that $Goto(Q,X) \notin STATES$ do $STATES := STATES \cup \{ Goto(Q,X) \}$

 Clearly, this terminates, as STATES is bounded above by the Powerset(LR(0) items)

CS 412/413 Spring 2007

Introduction to Compilers

LR(0) Grammar

Parse tree for

(a, (b,c), d)

· Nested lists:

 $S \rightarrow (L) \mid id$ $L \rightarrow S \mid L,S$

- · Sample strings
 - (a,b,c)
 - ((a,b),(c,d),(e,f))
 - (a,(b,c,d),((f,g)))

CS 412/413 Spring 2007

Introduction to Compilers

Start State

Grammar $S \rightarrow (L) \mid id$ $L \rightarrow S \mid L, S$

14

16

18

- · Start state
 - $V(\varepsilon) = \{ [S' \rightarrow .S] \}^{*}$ $= \{ [S' \rightarrow .S] [S \rightarrow .(L)], [S \rightarrow .id] \}$
- · Closure of a parser state Q:
 - Start with Closure(Q) = Q
 - Then for each item in Q:

 $\mathsf{A} \to \alpha.\mathsf{B}\beta$

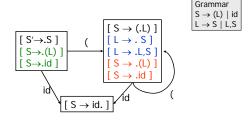
add the items for all the productions $\text{B} \to \gamma$ to the closure of Q:

 $\mathsf{B} \to .~\gamma$

CS 412/413 Spring 2007

Introduction to Compilers

Goto: Terminal Symbols

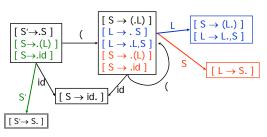


In new state, include all items that have appropriate input symbol just after dot, advance dot in those items, and take closure.

CS 412/413 Spring 2007

Introduction to Compilers

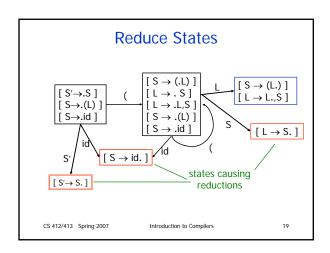
Goto: Nonterminal Symbols

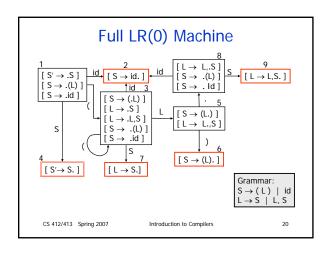


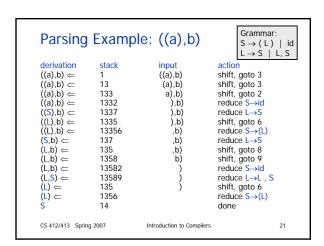
(same algorithm for transitions on nonterminals)

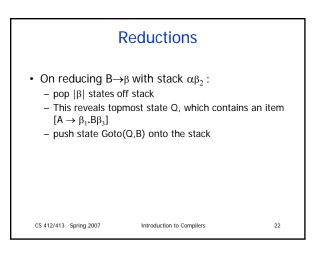
CS 412/413 Spring 2007

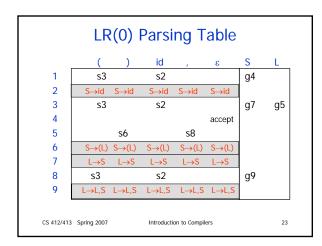
Introduction to Compilers











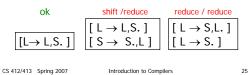
LR(0) Summary

• LR(0) parsing recipe:
Start with an LR(0) grammar
Compute LR(0) states and build DFA:
Build the LR(0) parsing table from the DFA

CS 412/413 Spring 2007 Introduction to Compilers 24

LR(0) Limitations

- An LR(0) machine only works if each state with a reduce action has only one possible reduce action and no shift action
- With more complex grammars, construction gives states with shift/reduce or reduce/reduce conflicts
- · Need to use look-ahead to choose



A Non-LR(0) Grammar

· Grammar for addition of numbers:

$$S \rightarrow S + E \mid E$$

 $E \rightarrow num \mid (S)$

- Left-associative is LR(0)
- Right-associative version is not LR(0)

$$S \rightarrow E + S \mid E$$

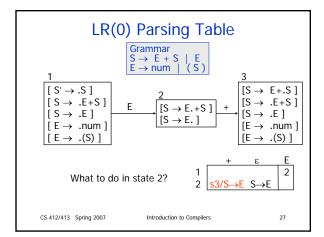
 $E \rightarrow num \mid (S)$

CS 412/413 Spring 2007

Introduction to Compilers

26

28



SLR(k)

- · Use the LR(0) machine states as rows of table
- · Let Q be a state and u be a lookahead string
 - Action(Q,u) = shift Goto(Q,b)

if Q contains an item of the form $[A\to\beta_1.b\beta_3],$ with $u\in FIRST_k(b\beta_3$ $FOLLOW_k(A))$

- Action(Q,u) = accept
 - if Q = { $[S' \rightarrow S]$ } and $u=\epsilon$
- Action(Q,u) = <u>reduce</u> i

if Q contains the item [A \to β .], where A \to β is the $i\underline{th}$ production of G and u \in FOLLOW $_k(A)$

- Action(Q,u) = <u>error</u> otherwise
- G is SLR(k) iff the Action function given above is single-valued for all Q and u, i.e, there are no shift-reduce or reduce-reduce conflicts

CS 412/413 Spring 2007

Introduction to Compilers

Next Time

- · Learn about other kinds of LR parsing:
 - SLR = improved LR(0)
 - LR(1) = 1 character lookahead
 - LALR(1) = Look-Ahead LR(1)
- Basic ideas are the same as for LR(0)
 - Parser states with LR items
 - DFA with transitions between parser states
 - Parser table with shift/reduce/goto actions

CS 412/413 Spring 2007

Introduction to Compilers

29