CS 4110 Programming Languages & Logics

Lecture 34 Logic Programming

Logic Programming: Origins

- Proposed in 1960s–1970s as logic-based approach to computation
- Usually based on first-order logic and resolution
- Examples:
 - Classic Languages: Prolog and Datalog
 - Modern Languages: Erlang, Verse
- Applications:
 - Database query languages
 - Program analysis
 - Various "niche" uses (e.g., Ericsson)

Facts, Rules, Queries

A logic program consists of:

- Facts: base truths
- Rules: implications
- Queries: goals to prove

Basic building blocks are Horn clauses of the form:

$$p_1 \wedge \cdots \wedge p_n \rightarrow h$$

In Prolog and Datalog, Horn clauses are usually written "backwards:"

$$h:=p_1,\ldots,p_n.$$

3

Prolog

- Expressive but operationally sensitive
- Uses depth-first, left-to-right resolution
- Allows functions, lists, arithmetic, control ops (cut)
- Rule order and subgoal order affect termination and correctness

Datalog

A disciplined subset of Prolog:

- No function symbols
- Rule safety required
- Negation must be stratified

Semantic guarantees:

- All programs terminate
- Finite set of derivable facts
- Evaluation does not depend on order

Datalog Syntax

```
r ::= h :- b. rule
| h.

h ::= p head

b ::= p_1, p_2, \dots p_n body

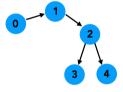
p ::= p(t_1, \dots t_n) predicate

t ::= x term
| n
```

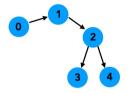
Definitions and Conventions

- An atomic predicate $p(n_1, \ldots, n_k)$ with no variables is called a ground atom.
- Each variable in the head of a rule must also appear in the body.

Suppose we have a graph:



Suppose we have a graph:



We can encode its edge relation as a collection of facts:

```
edge(0,1).
```

edge(1,2).

edge(2,3).

edge(2,4).

Ī

We can express reachability in the graph using the following rules:

```
\begin{split} & \text{reachable}(\textbf{x},\textbf{y}) := \text{edge}(\textbf{x},\textbf{y}) \,. \\ & \text{reachable}(\textbf{x},\textbf{y}) := \text{edge}(\textbf{x},\textbf{z}), \text{ reachable}(\textbf{z},\textbf{y}) \,. \end{split}
```

We can express reachability in the graph using the following rules:

```
reachable(x,y) :- edge(x,y).
reachable(x,y) :- edge(x,z), reachable(z,y).
```

We can detect cycles using the following rule:

```
cycle(x) := reachable(x,x).
```

We can express reachability in the graph using the following rules:

```
reachable(x,y) :- edge(x,y).
reachable(x,y) :- edge(x,z), reachable(z,y).
```

We can detect cycles using the following rule:

```
cycle(x) := reachable(x,x).
```

We can compute strongly-connected components using the following rule:

```
scc(x,y) := reachable(x,y), reachable(y,x).
```

Demo

Let's fire up Soufflé...

Herbrand Interpretation

The constants appearing in a program *P* form the Herbrand universe:

$$HU(P) = Const(P)$$
.

Herbrand Interpretation

The constants appearing in a program *P* form the Herbrand universe:

$$HU(P) = Const(P)$$
.

The ground atoms over predicates and constants form the *Herbrand base*:

$$HB(P) = \{ p(n_1, ..., n_k) \mid n_i \in HU(P) \}.$$

Herbrand Interpretation

The constants appearing in a program *P* form the Herbrand universe:

$$HU(P) = Const(P)$$
.

The ground atoms over predicates and constants form the *Herbrand base*:

$$HB(P) = \{ p(n_1, ..., n_k) \mid n_i \in HU(P) \}.$$

A Herbrand interpretation is any $I \subseteq HB(P)$.

Given a rule, suppose we substitute the variables with each constant in HU(P).

Given a rule, suppose we substitute the variables with each constant in HU(P).

Let Ground(P) denote the set of all such rules, called ground instances.

Given a rule, suppose we substitute the variables with each constant in HU(P).

Let Ground(P) denote the set of all such rules, called ground instances.

Example

Given a rule, suppose we substitute the variables with each constant in HU(P).

Let Ground(P) denote the set of all such rules, called ground instances.

Example

We can define the immediate consequence operator as follows:

$$T_P(I) = \{ h \mid (h : -p_1, \dots, p_k) \in Ground(P) \text{ and } p_1, \dots, p_k \in I \}.$$

Properties

The T_P operator is monotone:

$$I \subseteq J \Rightarrow T_p(I) \subseteq T_P(J)$$

Hence, because the Herbrand base is finite, $T_P(I)$ reaches a fixed point in finitely many iterations.

Formal Semantics

We can compute the meaning of a program by iterating the T_P operator to a fixed point, starting from the empty set:

$$\begin{array}{ccc}
I_0 & \triangleq & \emptyset \\
I_{i+1} & \triangleq & T_P(I_i)
\end{array}$$

Formal Semantics

We can compute the meaning of a program by iterating the T_P operator to a fixed point, starting from the empty set:

$$I_0 \triangleq \emptyset$$

$$I_{i+1} \triangleq T_P(I_i)$$

Definition (Meaning of Datalog Program)

$$M(P) \triangleq fix(T_P)$$

Negation

Pure Datalog is monotone: adding facts never invalidates conclusions.

Negation breaks monotonicity so we must be careful!

A well-behaved fragment is *stratified negation*, where negation is only used with previously-defined relations.

Stratification

A Datalog program is stratified if its predicates can be partitioned into layers (strata) S_0, S_1, \ldots, S_n such that:

- If P depends positively on Q, then $stratum(P) \ge stratum(Q)$.
- If P depends negatively on Q, then stratum(P) > stratum(Q).

Intuition:

- Lower strata computed first; higher strata may use negation on them.
- No predicate may depend *negatively* on itself, even indirectly.

Stratification Examples

Not Stratified:

$$p(x) := q(x), \text{ not } r(x).$$

 $r(x) := s(x), \text{ not } p(x).$

We have a cycle, $p \rightarrow r \rightarrow p$, so no valid stratification exists.

Stratified:

$$b(x) := a(x), c(x).$$

 $n(x) := a(x), not b(x).$

Here a, b, c are in S_0 while n is in S_1 .

Other Extensions

Other extensions of Datalog include:

- Aggregation (min, count, etc.)
- Arithmetic (plus, times, etc.)
- Datatypes (lists, trees, etc.)