Dependent types I

Guest lecture (Mark Barbone)

Previously in 4110

 $\overline{\Gamma,\alpha\ \mathrm{type}\vdash\lambda x.x:\alpha\mathop{\to}\limits_{^{\wedge\wedge\wedge\wedge\wedge\wedge\wedge\wedge\wedge}}\alpha}_{\text{a type...}}$ referencing the context! ^^ ^^

- \rightarrow " α type" is second-class: expressions can't appear in types
- → Strict separation between types and values

What about mixing terms and types?

•

$$\Gamma, n : \mathtt{nat} \vdash e : A(n)$$

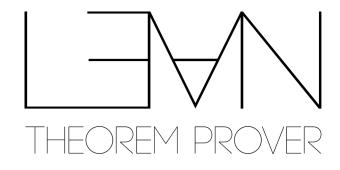
type depends on the value of n!

Dependent types

- Unified syntax of types and terms
- "Types are programs, too"
- Make your type system simpler* and more powerful!

* Terms and conditions apply

Dependent types



Demo: length-indexed lists in Rocq

Let's do some type theory!

New features we want to support

Dependent function type

$$\Pi(x:A) o B(x)$$

Type of functions f such that if a: A, then f(a): B(a)

"Pi type"

Dependent pair type

$$\Sigma(x:A) imes B(x)$$

Type of pairs (a,b) such that a: A and b: B(a)

"Sigma type"

Example: zeros : $\Pi(n : nat) \rightarrow vect nat n$

Pi types are functions

$$rac{\Gamma, x: A dash e: B}{\Gamma dash \lambda x.e: A
ightarrow B} \ rac{\overline{S}}{\overline{S}}$$

the variable x can appear in B

Syntactic sugar: can just write A → B if x is not used in B

Pi types are "forall"

System F

$$rac{\Delta, lpha; \Gamma dash e: B \quad lpha
otin FV(\Gamma)}{\Delta; \Gamma dash \Lambda lpha.e: orall lpha.B}$$

- New syntax and rules
- Extra contexts
- Extra side conditions

Dependent types

$$rac{\Gamma, A : \mathsf{Type} dash e : B}{\Gamma dash \lambda A.e : \Pi(A : \mathsf{Type}) o B}$$

- + Only one kind of lambda
- + Just an instance of the lambda rule

Syntactic sugar: can write $\forall x$. B if the type A is clear from context

Is vect A e_1 the same type as vect A e_2 ?

e₁ / e₂ may have free variables — e.g., vect A (n+1), if n is in scope

Need to check equivalence of programs e_1 and e_2 — how?

Need to check equivalence of programs e_1 and e_2 — how?

Need to check equivalence of programs e_1 and e_2 — how?

- Evaluate to the same value on all inputs undecidable
- Exactly the same AST way too restrictive

Need to check equivalence of programs e_1 and e_2 — how?

- Evaluate to the same value on all inputs undecidable
- Exactly the same AST way too restrictive
- Equal up to $\alpha/\beta/\eta$ equalities convenient and decidable

Restricting to pure, total functional programs makes this easier

Martin-Löf type theory

Typing judgment

$$egin{array}{l} e,A,B \coloneqq & x \mid \lambda x.e \mid e_1e_2 \ & \mid (e_1,e_2) \mid \pi_1(e) \mid \pi_2(e) \ & \mid \mathsf{Type} \mid \Pi(x:A)
ightarrow B \mid \Sigma(x:A) imes B \end{array} \quad \Gamma \vdash e : A$$

$$\Gamma := \cdot \mid \Gamma, x : A$$

Equality judgment

$$\Gamma dash e_1 \equiv e_2 : A$$

Basic typing rules

- Type is a type
- Variables from the context

$$\Gamma \vdash \mathsf{Type} : \mathsf{Type}$$

$$rac{(x:A)\in\Gamma}{\Gammadash x:A}$$

Basic equality rules

- Replacing equal types
- ≡ is an equivalence relation

$$rac{\Gamma dash A \equiv A' : \mathsf{Type} \qquad \Gamma dash e : A}{\Gamma dash e : A'} \qquad rac{\Gamma dash e : A}{\Gamma dash e \equiv e : A}$$

$$rac{\Gammadash e_1\equiv e_2:A \qquad \Gammadash e_2\equiv e_3:A}{\Gammadash e_1\equiv e_3:A} \qquad rac{\Gammadash e_1\equiv e_2:A}{\Gammadash e_2\equiv e_1:A}$$

Pi types

Formation

Introduction

Elimination

Computation

$$rac{\Gammadash A: \mathsf{Type} \qquad \Gamma, x: Adash B: \mathsf{Type}}{\Gammadash \Pi(x:A) o B: \mathsf{Type}}$$

$$rac{\Gamma dash A : \mathsf{Type} \qquad \Gamma, x : A dash e : B}{\Gamma dash \lambda x.e : \Pi(x : A) o B}$$

$$rac{\Gammadash e_1:\Pi(x:A) o B \quad \Gammadash e_2:A}{\Gammadash e_1e_2:B[e_2/x]}$$

$$rac{\Gamma,x:Adashe e_1:B}{\Gammadash(\lambda x.e_1)e_2\equiv e_1[e_2/x]:B[e_2/x]} = rac{\Gamma,x:Adashe e_1:B}{\Gamma(\lambda x.e_1)e_2\equiv e_1[e_2/x]} = (eta)$$

Sigma types

 $\Gamma \vdash A : \mathsf{Type} \qquad \Gamma, x : A \vdash B : \mathsf{Type}$

 $\Gamma \vdash \Sigma(x:A) imes B: \mathsf{Type}$

Formation

Introduction

Elimination

Computation

$$rac{\Gamma dash e_1 : A \qquad \Gamma dash e_2 : B[e_1/x]}{\Gamma dash (e_1,e_2) : \Sigma(x : A) imes B}$$

$$\Gamma \vdash (e_1, e_2) : \Sigma(x : A) \times B$$

$$rac{\Gamma dash e : \Sigma(x : A) imes B}{\Gamma dash \pi_1(e) : A} \quad rac{\Gamma dash e : \Sigma(x : A) imes B}{\Gamma dash \pi_2(e) : B[\pi_1(e)/x]}$$

$$rac{\Gammadash e_1:A \qquad \Gammadash e_2:B[e_1/x]}{\Gammadash \pi_2(e_1,e_2)\equiv e_2:B[e_1/x]}$$

That's it!

- A few basic rules
- Rules for each feature:
 - Formation
 - Introduction
 - Elimination
 - Computation

Deciding equality and type checking

Proposition. For every equivalence class of well-typed terms, you can compute a canonical representative, called the *normal form*.

Proof sketch: by induction on the typing derivation, with a fairly complicated induction hypothesis.

- → Equality of terms (in particular, types) is decidable
- → Type checking is decidable
- → fails when you have Type: Type! (related to Russell's paradox)
 Solution: use a hierarchy Type₀: Type₁: Type₂: ...

Conclusion

Dependent types let you...

- Pass around types as values
- Put more interesting properties in types

... but checking equality of types becomes harder.

Friday: Propositions as types, Proofs as programs

Where to learn more about dependent types

To learn a dependently typed theorem prover:

- The Natural Number Game teaches Lean
 https://adam.math.hhu.de/#/g/leanprover-community/nng4
- Software foundations teaches Rocq https://softwarefoundations.cis.upenn.edu/
- PLFA teaches Agda https://plfa.github.io/

To learn type theory:

- Daniel Gratzer and Carlo Angiuli's book
 https://www.danielgratzer.com/papers/type-theory-book.pdf
- Chapter 2 of the HoTT book has a good intro https://homotopytypetheory.org/book/