Dependent types |

Guest lecture (Mark Barbone)

Previously in 4110

I'Catype - Az.z : a0 — «

ANNNANNNNNANN a type."

referencing the context! 22 AN

> “o type” is second-class: expressions can’t appear in types
> Strict separation between types and values

What about mixing terms and types?

[',n:natFe: A(n)

ANNNNNNANN

type depends on the value of n!

Dependent types

e Unified syntax of types and terms
e “Typesare programs, too”
e Make your type system simpler* and more powerful!

* Terms and conditions apply

Dependent types

WwWROCQ UAgad
VN Y1dris

Demo: length-indexed lists in Rocq

Let's do some type theory!

New features we want to support

Dependent function type Dependent pair type

[I(x: A) — B(x) Y(x: A) X B(x)

Type of functions f such that Type of pairs (a,b) such that
ifa:A, thenf(a):B(a) a:Aandb:B(a)
“Pi type” “Sigma type”

Example: zeros : M(n : nat) > vect nat n

Pi types are functions

B I''x:AFe: B 3
I' 'HFAXxe:A— B B

the variable x can appear in B

Syntactic sugar: can just write A> Bifxisnotused in B

Pi types are “forall”

System F Dependent types
Ao;T'Fe: B a¢ FV(T) I'A: Typete: B
A;T + Aa.e:Va. B '-MXA.e:II(A: Type) — B
- New syntax and rules + Only one kind of lambda
- Extra contexts + Just an instance of the
- Extra side conditions lambda rule

Syntactic sugar: can write Vx. B if the type A is clear from context

Challenge: equality of types

Isvect A e, the same type asvectAe,?

e,/ e, may have free variables — e.g., vect A (n+1), if nis in scope

Need to check equivalence of programs e, and e, — how?

Challenge: equality of types

Need to check equivalence of programs e, and e, — how?

Challenge: equality of types

Need to check equivalence of programs e, and e, — how?

e Evaluate to the same value on all inputs — undecidable
e Exactly the same AST — way too restrictive

Challenge: equality of types

Need to check equivalence of programs e, and e, — how?

e Evaluate to the same value on all inputs — undecidable
e Exactly the same AST — way too restrictive
e Equalup to a/f3/nequalities — convenient and decidable

Restricting to pure, total functional programs makes this easier

Martin-Lof type theory
Typing judgment

e,A,B =z | Azr.e | eres
| (e1,e2) [mi(e) | ma(e) I'Fe: A

| Type |II(z: A) > B | X(xz: A) x B

'i=-|T,z: A Equality judgment

I'Fej=ey: A

Basic typing rules

e Typeisatype

e Variables from the context I‘ |— Type s Type

(x:A) el
I'Fx: A

Basic equality rules

e Replacing equal types
e =isanequivalence relation

TFA=A:Type Tre:A 'Fe:A

CHe: A I'Fe=e: A

I'Fei=e: A I'Fey=e3: A P|_€1562!

e =e3: A I'Fey, =eq:

Pi types

Formation
Introduction
Elimination

Computation

I'-A: Type I'z: AF B: Type
'FII(x: A) — B : Type

I'-A: Type I'z:AFe: B
F'FAze:Il(z: A) - B

'+e :I(z: A) — B F'Fey: A
[ejes : Bleg/x]

I'Nx:AFe : B I'Fey: A
: o (B)

['F (Ax.e1)ex = erles/x| : Bley/x]

Sigma types I'A: Type I''x: AF- B : Type
'F3Y(x:A) x B: Type

Formation
Introduction I' - € - A I' - € . B[el/w]
Elimination 'k (e1,e9):X(x:A) X B

Computation

'e:Y(z:A)xB T'tle:¥z:A) xB
C'Fm(e): A '+ my(e) : Blmi(e)/z]

F|_61:A F|_62!B[61/w]
I' - 7T2(61,€2) — €9 . B[el/m]

That's it!

e Afew basicrules

e Rules for each feature:

O

O
O
O

Formation
Introduction
Elimination
Computation

Deciding equality and type checking
Proposition. For every equivalence class of well-typed terms, you

can compute a canonical representative, called the normal form.

Proof sketch: by induction on the typing derivation, with a fairly
complicated induction hypothesis.

> Equality of terms (in particular, types) is decidable
> Type checking is decidable

> fails when you have Type : Type! (related to Russell’s paradox)
Solution: use a hierarchy Type, : Type, : Type, : ...

Conclusion

Dependent types let you...

e Pass around types as values
e Put more interesting properties in types

... but checking equality of types becomes harder.

Friday: Propositions as types, Proofs as programs

Where to learn more about dependent types

To learn a dependently typed theorem prover:

e The Natural Number Game teaches Lean
https://adam.math.hhu.de/#/g/leanprover-community/nng4

e Software foundations teaches Rocq https://softwarefoundations.cis.upenn.edu/
e PLFAteaches Agda https://plfa.github.io/

To learn type theory:

e Daniel Gratzer and Carlo Angiuli’s book

https://www.danielgratzer.com/papers/type-theory-book.pdf
e Chapter 2 of the HoTT book has a good intro

https://homotopytypetheory.org/book/

https://adam.math.hhu.de/#/g/leanprover-community/nng4
https://softwarefoundations.cis.upenn.edu/
https://plfa.github.io/
https://www.danielgratzer.com/papers/type-theory-book.pdf
https://homotopytypetheory.org/book/

