
Dependent types I
Guest lecture (Mark Barbone)

Previously in 4110

 ^^^^^^^^^^ a type…
 referencing the context! ^^ ^^

→ “α type” is second-class: expressions canʼt appear in types
→ Strict separation between types and values

What about mixing terms and types?

 ^^^^^^^^
 type depends on the value of n!

Dependent types

● Unified syntax of types and terms
● “Types are programs, too”
● Make your type system simpler* and more powerful!

* Terms and conditions apply

Dependent types

Demo: length-indexed lists in Rocq

Let’s do some type theory!

New features we want to support

Dependent function type

Type of functions f such that
if a : A, then f(a) : B(a)

“Pi type”

Dependent pair type

Type of pairs (a,b) such that
a : A and b : B(a)

“Sigma type”

Example: zeros : Π(n : nat) → vect nat n

 ^^ ^^
the variable x can appear in B

Pi types are functions

Syntactic sugar: can just write A → B if x is not used in B

Pi types are “forall”

System F

- New syntax and rules
- Extra contexts
- Extra side conditions

Dependent types

+ Only one kind of lambda
+ Just an instance of the

lambda rule

Syntactic sugar: can write ∀x. B if the type A is clear from context

Challenge: equality of types

Is vect A e₁ the same type as vect A e₂?

e₁ / e₂ may have free variables — e.g., vect A (n+1), if n is in scope

Need to check equivalence of programs e₁ and e₂ — how?

Challenge: equality of types

Need to check equivalence of programs e₁ and e₂ — how?

Challenge: equality of types

Need to check equivalence of programs e₁ and e₂ — how?

● Evaluate to the same value on all inputs — undecidable
● Exactly the same AST — way too restrictive

Challenge: equality of types

Need to check equivalence of programs e₁ and e₂ — how?

● Evaluate to the same value on all inputs — undecidable
● Exactly the same AST — way too restrictive
● Equal up to α/β/η equalities — convenient and decidable

Restricting to pure, total functional programs makes this easier

Martin-Löf type theory
Typing judgment

Equality judgment

Basic typing rules

● Type is a type
● Variables from the context

Basic equality rules

● Replacing equal types
● ≡ is an equivalence relation

Pi types

Formation

Introduction

Elimination

Computation

Sigma types

Formation

Introduction

Elimination

Computation

That’s it!

● A few basic rules
● Rules for each feature:

○ Formation
○ Introduction
○ Elimination
○ Computation

Deciding equality and type checking

Proposition. For every equivalence class of well-typed terms, you
can compute a canonical representative, called the normal form.

Proof sketch: by induction on the typing derivation, with a fairly
complicated induction hypothesis.

 → Equality of terms (in particular, types) is decidable

 → Type checking is decidable

 → fails when you have Type : Type! (related to Russellʼs paradox)
Solution: use a hierarchy Type₀ : Type₁ : Type₂ : ...

Conclusion

Dependent types let you…

● Pass around types as values
● Put more interesting properties in types

… but checking equality of types becomes harder.

Friday: Propositions as types, Proofs as programs

Where to learn more about dependent types

To learn a dependently typed theorem prover:

● The Natural Number Game teaches Lean
https://adam.math.hhu.de/#/g/leanprover-community/nng4

● Software foundations teaches Rocq https://softwarefoundations.cis.upenn.edu/
● PLFA teaches Agda https://plfa.github.io/

To learn type theory:

● Daniel Gratzer and Carlo Angiuliʼs book
https://www.danielgratzer.com/papers/type-theory-book.pdf

● Chapter 2 of the HoTT book has a good intro
https://homotopytypetheory.org/book/

https://adam.math.hhu.de/#/g/leanprover-community/nng4
https://softwarefoundations.cis.upenn.edu/
https://plfa.github.io/
https://www.danielgratzer.com/papers/type-theory-book.pdf
https://homotopytypetheory.org/book/

