
 

CS 4110
Programming Languages & Logics

Lecture 24
Parametric Polymorphism



Roadmap

We’ve extended a simple type system for the λ-calculus with support for a few
interesting language constructs. But the “power” of the underlying type system
has remainedmore or less the same.

Today, we’ll develop a far more fundamental change to the simply-typed
λ-calculus: parametric polymorphism, the concept at the heart of OCaml’s type
system and underlying generics in Java and similar languages.

2



Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade as values of
type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the same function
name to be used with functions that take different types of parameters.

• Parametric polymorphism refers to code that is written without knowledge of
the actual type of the arguments; the code is parametric in the type of the
parameters.

3



Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade as values of
type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the same function
name to be used with functions that take different types of parameters.

• Parametric polymorphism refers to code that is written without knowledge of
the actual type of the arguments; the code is parametric in the type of the
parameters.

3



Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade as values of
type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the same function
name to be used with functions that take different types of parameters.

• Parametric polymorphism refers to code that is written without knowledge of
the actual type of the arguments; the code is parametric in the type of the
parameters.

3



Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade as values of
type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the same function
name to be used with functions that take different types of parameters.

• Parametric polymorphism refers to code that is written without knowledge of
the actual type of the arguments; the code is parametric in the type of the
parameters.

3



Example

Consider a “doubling” function that takes a function f, and an integer x, applies f
to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

4



Example

Consider a “doubling” function that takes a function f, and an integer x, applies f
to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

4



Example

Consider a “doubling” function that takes a function f, and an integer x, applies f
to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

4



Abstraction

These examples on the preceding slides violate a fundamental principle of
software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be implemented in just
one place in the code. When similar functionality is provided by distinct pieces of
code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling operation, and later
instantiate it with different concrete types.

5



Abstraction

These examples on the preceding slides violate a fundamental principle of
software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be implemented in just
one place in the code. When similar functionality is provided by distinct pieces of
code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling operation, and later
instantiate it with different concrete types.

5



Abstraction

These examples on the preceding slides violate a fundamental principle of
software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be implemented in just
one place in the code. When similar functionality is provided by distinct pieces of
code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling operation, and later
instantiate it with different concrete types.

5



Abstraction

These examples on the preceding slides violate a fundamental principle of
software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be implemented in just
one place in the code. When similar functionality is provided by distinct pieces of
code, the two should be combined into one by abstracting out the varying parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling operation, and later
instantiate it with different concrete types.

5



Polymorphic λ-Calculus

Invented independently in 1972–1974 by a computer scientist John Reynolds
and a logician Jean-Yves Girard (who called it System F).

Key feature: Function abstraction and application, just like in λ-calculus terms,
but at the type level!

Notation:
• Λα. e: type abstraction
• e[τ ]: type application

Example:
Λα. λx :α. x

6



Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2

| Λα. e

| e [τ ]

v ::= n | λx :τ. e

| Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (Λα. e) [τ ] → e{τ/α}

7



Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | Λα. e

| e [τ ]

v ::= n | λx :τ. e

| Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (Λα. e) [τ ] → e{τ/α}

7



Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | Λα. e | e [τ ]
v ::= n | λx :τ. e

| Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (Λα. e) [τ ] → e{τ/α}

7



Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | Λα. e | e [τ ]
v ::= n | λx :τ. e | Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (Λα. e) [τ ] → e{τ/α}

7



Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | Λα. e | e [τ ]
v ::= n | λx :τ. e | Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (Λα. e) [τ ] → e{τ/α}

7



Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | Λα. e | e [τ ]
v ::= n | λx :τ. e | Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x}

(Λα. e) [τ ] → e{τ/α}

7



Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | Λα. e | e [τ ]
v ::= n | λx :τ. e | Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (Λα. e) [τ ] → e{τ/α}

7



Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2

| α | ∀α. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ amapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8



Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | α

| ∀α. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ amapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8



Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | α | ∀α. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ amapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8



Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | α | ∀α. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ amapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type

Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8



Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | α | ∀α. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ amapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8



Typing Rules

∆, Γ ⊢ n : int

Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {α}, Γ ⊢ e :τ
∆, Γ ⊢ Λα. e :∀α. τ

∆, Γ ⊢ e :∀α. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ ] :τ ′{τ/α}

9



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {α}, Γ ⊢ e :τ
∆, Γ ⊢ Λα. e :∀α. τ

∆, Γ ⊢ e :∀α. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ ] :τ ′{τ/α}

9



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {α}, Γ ⊢ e :τ
∆, Γ ⊢ Λα. e :∀α. τ

∆, Γ ⊢ e :∀α. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ ] :τ ′{τ/α}

9



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {α}, Γ ⊢ e :τ
∆, Γ ⊢ Λα. e :∀α. τ

∆, Γ ⊢ e :∀α. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ ] :τ ′{τ/α}

9



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {α}, Γ ⊢ e :τ
∆, Γ ⊢ Λα. e :∀α. τ

∆, Γ ⊢ e :∀α. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ ] :τ ′{τ/α}

9



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {α}, Γ ⊢ e :τ
∆, Γ ⊢ Λα. e :∀α. τ

∆, Γ ⊢ e :∀α. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ ] :τ ′{τ/α}

9



Type Well-Formedness

α ∈ ∆

∆ ⊢ α ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {α} ⊢ τ ok
∆ ⊢ ∀α. τ ok

10



Type Well-Formedness

α ∈ ∆

∆ ⊢ α ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {α} ⊢ τ ok
∆ ⊢ ∀α. τ ok

10



Type Well-Formedness

α ∈ ∆

∆ ⊢ α ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {α} ⊢ τ ok
∆ ⊢ ∀α. τ ok

10



Type Well-Formedness

α ∈ ∆

∆ ⊢ α ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {α} ⊢ τ ok
∆ ⊢ ∀α. τ ok

10



Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11



Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11



Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11



Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11



Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7

→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11



Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7

→∗ 9

11



Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11



Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the
expression λx. x x.

In the polymorphic λ-calculus, however, we can type this expression using a
polymorphic type:

⊢ λx :∀α. α → α. x [∀α. α → α] x
: (∀α. α → α) → (∀α. α → α)

(However, all expressions in polymorphic λ-calculus still halt. There is no way to
give a type to the self-application of this term.)

12



Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the
expression λx. x x.

In the polymorphic λ-calculus, however, we can type this expression using a
polymorphic type:

⊢ λx :∀α. α → α. x [∀α. α → α] x
: (∀α. α → α) → (∀α. α → α)

(However, all expressions in polymorphic λ-calculus still halt. There is no way to
give a type to the self-application of this term.)

12



Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing the
expression λx. x x.

In the polymorphic λ-calculus, however, we can type this expression using a
polymorphic type:

⊢ λx :∀α. α → α. x [∀α. α → α] x
: (∀α. α → α) → (∀α. α → α)

(However, all expressions in polymorphic λ-calculus still halt. There is no way to
give a type to the self-application of this term.)

12



Example: Products

We can encode products in polymorphic λ-calculus without adding any
additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R

(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2
#1≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)
#2≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13



Example: Products

We can encode products in polymorphic λ-calculus without adding any
additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R
(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2

#1≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)
#2≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13



Example: Products

We can encode products in polymorphic λ-calculus without adding any
additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R
(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2
#1≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)

#2≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13



Example: Products

We can encode products in polymorphic λ-calculus without adding any
additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R
(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2
#1≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)
#2≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13



Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any
additional types!

Again, the encodings are based on the (untyped) Church encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R

inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.
v [R] b1 b2

14



Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any
additional types!

Again, the encodings are based on the (untyped) Church encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R
inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1

inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2
case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.

v [R] b1 b2

14



Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any
additional types!

Again, the encodings are based on the (untyped) Church encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R
inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.
v [R] b1 b2

14



Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without adding any
additional types!

Again, the encodings are based on the (untyped) Church encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R
inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.
v [R] b1 b2

14



Type Erasure

The semantics presented above explicitly passes type but in an implementation,
one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic λ-calculus
expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

15



Type Erasure

The semantics presented above explicitly passes type but in an implementation,
one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic λ-calculus
expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

15



Type Erasure

The semantics presented above explicitly passes type but in an implementation,
one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic λ-calculus
expression.

erase(x) = x

erase(λx :τ. e) = λx. erase(e)
erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

15



Type Erasure

The semantics presented above explicitly passes type but in an implementation,
one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic λ-calculus
expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

15



Type Erasure

The semantics presented above explicitly passes type but in an implementation,
one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic λ-calculus
expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)

erase(Λα. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

15



Type Erasure

The semantics presented above explicitly passes type but in an implementation,
one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic λ-calculus
expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = λz. erase(e) where z is fresh for e

erase(e [τ ]) = erase(e) (λx. x)

15



Type Erasure

The semantics presented above explicitly passes type but in an implementation,
one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic λ-calculus
expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

15



Type Erasure

The following theorem states this translation is adequate:

Theorem (Erasure Adequacy)
For all expressions e and e′, we have e → e′ iff erase(e) → erase(e′).

16


