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De Bruijn Notation and Combinators



de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a nameless
representation of terms.

e ::= n | λ.e | e e

Abstractions have lost their variables!

Variables are replaced with numerical indices!
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Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn
λx. x λ. 0

λz. z

λ. 0

λx. λy. x λ. λ. 1

λx. λy. λs. λz. x s (y s z) λ. λ. λ. λ. 3 1 (2 1 0)

(λx. x x) (λx. x x) (λ. 0 0) (λ. 0 0)

(λx. λx. x) (λy. y) (λ. λ. 0) (λ. 0)
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Free variables

To represent a λ-expression that contains free variables in de Bruijn notation, we
need a way to map the free variables to integers.

We will work with respect to a map Γ from variables to integers called a context.

Examples:
Suppose that Γmaps x to 0 and y to 1.
• Representation of x y is 0 1
• Representation of λz. x y z λ. 1 2 0
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Shifting

To define substitution, we will need an operation that shifts by i the variables
above a cutoff c:

↑i
c (n) =

{
n if n < c
n+ i otherwise

↑i
c (λ.e) = λ.(↑i

c+1 e)
↑i
c (e1 e2) = (↑i

c e1) (↑i
c e2)

The cutoff c keeps track of the variables that were bound in the original
expression and so should not be shifted.

The cutoff is 0 initially.
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Substitution

Nowwe can define substitution:

n{e/m} =

{
e if n = m
n otherwise

(λ.e1){e/m} = λ.e1{(↑10 e)/m+ 1}
(e1 e2){e/m} = (e1{e/m}) (e2{e/m})

The β rule for terms in de Bruijn notation is just:

(λ.e1) e2 →↑−1
0 (e1{↑10 e2/0})

β
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Example

Consider the term (λu.λv.u x) ywith respect to a context where Γ(x) = 0 and
Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})
= ↑−1

0 λ.(1{3/1}) (2{3/1})
= ↑−1

0 λ.3 2
= λ.2 1

which, in standard notation (with respect to Γ), is the same as λv.y x.
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Combinators

Another way to avoid the issues having to do with free and bound variable
names in the λ-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire λ-calculus.

K = λx.λy. x
S = λx.λy.λz. x z (y z)
I = λx. x
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Combinators

We can even define independent evaluation rules that don’t depend on the
λ-calculus at all.

Behold the “SKI-calculus”:

K e1 e2 → e1
S e1 e2 e3 → e1 e3 (e2 e3)
I e → e

You would never want to program in this language—it doesn’t even have
variables!—but it’s exactly as powerful as the λ-calculus.
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Bracket Abstraction

The function [x] that takes a combinator termM and builds another term that
behaves like λx.M:

[x] x = I
[x] N = K N where x ̸∈ fv(N)

[x] N1 N2 = S ([x] N1) ([x] N2)

The idea is that ([x]M) N → M{N/x} for every term N.
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Bracket Abstraction

We then define a function (e)∗ that maps a λ-calculus expression to a
combinator term:

(x)∗ = x
(e1 e2)∗ = (e1)∗ (e2)∗
(λx.e)∗ = [x] (e)∗
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Example

As an example, the expression λx.λy. x is translated as follows:

(λx.λy. x)∗
= [x] (λy. x)∗
= [x] ([y] x)
= [x] (K x)
= (S ([x] K) ([x] x))
= S (K K) I

No variables in the final combinator term!
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Example

We can check that this behaves the same as our original λ-expression by seeing
how it evaluates when applied to arbitrary expressions e1 and e2.

(λx.λy. x) e1 e2
→ (λy. e1) e2
→ e1

and
(S (K K) I) e1 e2

→ (K K e1) (I e1) e2
→ K e1 e2
→ e1
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SKI Without I

Looking back at our definitions...

K e1 e2 → e1
S e1 e2 e3 → e1 e3 (e2 e3)
I e → e

...I isn’t strictly necessary. It behaves the same as S K K.

Our example becomes:

S (K K) (S K K)
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SKI Without SKI?

You can go one step farther!

ι ≜ λf. f S K
= λf. f (λa. λb. λc. ((a c) (b c))) λd. λe. d

So:

S ≡β ι (ι (ι (ι ι)))

K ≡β ι (ι (ι ι))

I ≡β ι ι

A single combinator suffices!
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