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Programming Languages & Logics

Lecture 23
De Bruijn Notation and Combinators



de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a nameless
representation of terms.
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de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a nameless
representation of terms.

ex=n|lelee

Abstractions have lost their variables!

Variables are replaced with numerical indices!
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Examples

Here are some terms written in standard and de Bruijn notation:

Standard

M. X
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Examples

Here are some terms written in standard and de Bruijn notation:

Standard

M. X

NZ.Z

AX. Y. X

M. AS. Az xS (Ysz)
(M. xx) (Ax. xx)

(M. . x) (Ay. y)

de Bruijn

A0

A. 0

AL

A XA AN31(210)
(A\.00) (A.00)

(A A.0) (N 0)



Free variables

To represent a A-expression that contains free variables in de Bruijn notation, we
need a way to map the free variables to integers.

We will work with respect to a map I' from variables to integers called a context.

Examples:

Suppose that ' maps xto 0 and y to 1.
e Representation of xyis01
e Representationof \z.xyzA.120



Shifting

To define substitution, we will need an operation that shifts by i the variables
above a cutoff c:

i B n ifn<c
Te(n) = n+i otherwise
tt(he) = (. e)
T (e1€2) = (Tc e1) (T¢ €2)

The cutoff c keeps track of the variables that were bound in the original
expression and so should not be shifted.

The cutoffis 0 initially.



Substitution

Now we can define substitution:

nie/m}

(\.e1){e/m}
(e1€2){e/m}

e ifn=m

n otherwise
Ae{(T5e)/m+ 1}
(ex{e/m}) (e2{e/m})



Substitution

Now we can define substitution:

€
fe/m) = { 5 mermiee

(Ae){e/m} = Xe{(15€e)/m+ 1}

(ere){e/m} = (ei{e/m}) (e2{e/m})

The (3 rule for terms in de Bruijn notation is just:

(e e =10 (er(1h en/0])



Example

Consider the term (Au.Av.u x) y with respect to a context where ['(x) = 0 and
My) =1.
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Example

Consider the term (Au.Av.u x) y with respect to a context where ['(x) = 0 and

ry) =1

(A )\12)
— oo ((A12){(151)/0})
= 1o (\12){2/0})



Example

Consider the term (Au.Av.u x) y with respect to a context where ['(x) = 0 and
My) =1.

1
(A12){(1} 1)/0})
(A.12){2/0})
((12){(162)/(0+1)})

S~



Example

Consider the term (Au.Av.u x) y with respect to a context where ['(x) = 0 and
My) =1.

(AA12)1
— To ((A-12){(15 1)/0})
= ((A 12){2/0})
= To AM(A2){(152)/(0+1)})
= Tom A((12){3/1})



Example

Consider the term (Au.\v.u x) y with respect to a context where '(x) = 0 and
My) =1.
(>\ Al2)1
o (A12){(151)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
A((12){3/1})

o A-(1{3/1}) (2{3/1})

o4



Example

Consider the term (Au.\v.u x) y with respect to a context where '(x) = 0 and
My) =1.
(>\ Al2)1
o (A12){(151)/0})
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Example

Consider the term (Au.\v.u x) y with respect to a context where '(x) = 0 and
My) =1.
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Example

Consider the term (Au.\v.u x) y with respect to a context where '(x) = 0 and
My) =1.
(>\ Al2)1
o (A12){(151)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
A((12){3/1})
To‘l A(1{3/1}) (2{3/1})
ot A32
A21

[ T T "

which, in standard notation (with respect to I'), is the same as A\v.y x.



Combinators

Another way to avoid the issues having to do with free and bound variable
names in the A-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire A-calculus.



Combinators

Another way to avoid the issues having to do with free and bound variable
names in the A-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire A-calculus.

K= MA\y. x
S=MNAz.xz(y2z)
| = M. x



Combinators

We can even define independent evaluation rules that don’t depend on the
A-calculus at all.

Behold the “SKl-calculus”:

Ke, e, = e;
Sel €63 — €163 (ez e3)
le—e

You would never want to program in this language—it doesn’t even have
variables!—but it’s exactly as powerful as the A-calculus.



Bracket Abstraction

The function [x] that takes a combinator term M and builds another term that
behaves like Ax.M:

X]x =1
XIN = KN where x & fv(N)
XINL N2 = S ([ N1) (X N2)

Theideais that ([x] M) N — M{N/x} for every term N.



Bracket Abstraction

We then define a function (e)* that maps a A-calculus expression to a
combinator term:
(x)x = x
(e]_ ez)* = (el)* (ez)*
(Mx.e)x = [x](e)x



Example

As an example, the expression \x.\y. x is translated as follows:

(AXCAY. X)*
= X (. x)*
= (V] x)
= [X(Kx)
= (S(XK) (x]x))
= S(KK)|

No variables in the final combinator term!

12



Example

We can check that this behaves the same as our original A\-expression by seeing
how it evaluates when applied to arbitrary expressions e; and e,.

(MY X) e; e,
— ()\y el) €y
— €

13



Example

We can check that this behaves the same as our original A\-expression by seeing
how it evaluates when applied to arbitrary expressions e; and e,.

(MY X) e; e,
— ()\y el) €y
— €

and

(S(KK)1) e, e,
(K K e]_) (I el) ()
Ke; e,

€1

L1l

13



SKI Without |

Looking back at our definitions...

Kei e, = e;
Sel €63 — €163 (ez e3)
le —e

...l isn’t strictly necessary. It behaves the same as SKK.

14



SKI Without |

Looking back at our definitions...

Kei e, = e;
Sel €63 — €163 (ez 93)
le —e

...l isn’t strictly necessary. It behaves the same as SKK.

Our example becomes:

S (KK) (SKK)

14



SKI Without SKI?

You can go one step farther!

L= M. fSK
=M. f(Aa. \b. Xc. ((ac) (bc))) Ad. he.d

15



SKI Without SKI?

You can go one step farther!

L= M. fSK
=M. f(Aa. \b. Xc. ((ac) (bc))) Ad. he.d

So:

S=51(t(t(er)))
K=50t(t(Le))
=50t

A single combinator suffices!
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