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Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central function we’ll need is
a successor operation:

SUCC n = n+ 1
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Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies
f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another application of f:

SUCC ≜

λn.

λf. λx.

f (

n f x

)
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Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural
number n1 + n2 is the result of applying the successor function n1 times to n2.

PLUS ≜

λn1. λn2. n1 SUCC n2
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Church Numerals

We can define more functions on integers:

SUCC ≜ λn. λf. λx. f (n f x)
PLUS ≜ λn1. λn2. n1 SUCC n2

TIMES ≜ λn1. λn2. n1 (PLUS n2) 0
ISZERO ≜ λn. n (λz. FALSE) TRUE
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Termination in the λ-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ-term eventually terminate under CBN evaluation?

∀ closed term e. ∃e′. e→∗ e′ ∧ e′ ̸→ ?

No!

Ω ≜ (λx. x x) (λx. x x)
→ (x x) {(λx. x x)/x}
= (λx. x x) (λx. x x)
= Ω
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Recursive Functions

Howwould we write recursive functions, like factorial?

We’d like to write it like this...

FACT ≜ λn. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation this is...

FACT ≜ λn. if n = 0 then 1 else n× FACT (n− 1)

...but this is an equation, not a definition!
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Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive
equation on the previous slide.

Define a new function FACT′ that takes a function f as an argument. Then, for
“recursive” calls, it uses f f:

FACT′ ≜ λf. λn. if n = 0 then 1 else n× ((f f) (n− 1))

Then define FACT as FACT′ applied to itself:

FACT ≜ FACT′ FACT′
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Example

Let’s try evaluating FACT on 3...

FACT 3

= (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× ((f f) (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× ((FACT′ FACT′) (n− 1))) 3
→ if 3 = 0 then 1 else 3× ((FACT′ FACT′) (3− 1))
→ 3× ((FACT′ FACT′) (3− 1))
= 3× (FACT (3− 1))
→ . . .

→ 3× 2× 1× 1
→∗ 6
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Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different
function f′ that takes itself as an argument and uses self-application for recursive
calls, and then define f as f′ f′.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g is a fixed point of G, then G g = g. To see that any fixed point g is a
real factorial function, try evaluating it:

g 5

= (G g) 5
→∗ 5× (g 4)
= 5× ((G g) 4)
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Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of math. In the
λ-calculus, we just need a suitable combinator...
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Y Combinator

The (infamous) Y combinator is defined as

Y ≜ λf. (λx. f (x x)) (λx. f (x x))

We say that Y is a fixed point combinator because Y f is a fixed point of f (for any f).

What happens when we evaluate Y G under CBV?
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Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which
is easier to use under CBV.

Z ≜ λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

13



Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which
is easier to use under CBV.

Z ≜ λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

13



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G

= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z

→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))

→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)

= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))
(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)

→ λn. if n = 0 then 1
else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))

=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)

→ λn. if n = 0 then 1
else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))

=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))

=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)

=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))

= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

Let’s see Z in action, on our function G.
FACT

= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× ((Z G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here’s a cute
one:

Yk ≜ (L L L L L L L L L L L L L L L L L L L L L L L L L L)

where
L ≜ λabcdefghijklmnopqstuvwxyzr.

(r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))
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Turing’s Fixed Point Combinator

To gain somemore intuition for fixed point combinators, let’s derive a
combinatorΘ originally discovered by Turing.

We know thatΘ f is a fixed point of f, so we have

Θ f = f (Θ f).

We can write the following recursive equation:

Θ = λf. f (Θ f)

Now use the recursion removal trick:
Θ′ ≜ λt. λf. f (t t f)
Θ ≜ Θ′ Θ′
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θ Example

FACT = Θ G

= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))
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