CS 4110

Programming Languages & Logics

Lecture 22
Fixed-Point Combinators



Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central function we’ll need is
a successor operation:

SUCCn=n+1



Church Numerals

Church numerals encode a number n as a function that takes fand x, and applies

fto x n times.
Mo X x

Mo fx
M. f(Fx)

N | Ol
(> > >



Church Numerals

Church numerals encode a number n as a function that takes fand x, and applies

fto x n times.
Mo X x

Mo fx
M. f(Fx)

We can write a successor function that “inserts” another application of f:

NI =l Ol
1> 1> {1>

SUCC £ \n.



Church Numerals

Church numerals encode a number n as a function that takes fand x, and applies

fto x n times.
Mo X x

Mo fx
M. f(Fx)

We can write a successor function that “inserts” another application of f:

NI =l Ol
1> 1> {1>

SUCC £ \n. M. M.



Church Numerals

Church numerals encode a number n as a function that takes fand x, and applies

fto x n times.
Mo X x

Mo fx
M. f(Fx)

We can write a successor function that “inserts” another application of f:

NI =l Ol
1> 1> {1>

SUCC £ MAn. M. M. nfx



Church Numerals

Church numerals encode a number n as a function that takes fand x, and applies

fto x n times.
Mo X x

Mo fx
M. f(Fx)

We can write a successor function that “inserts” another application of f:

NI =l Ol
1> 1> {1>

SUCC £ An. M. \x. f(nfx)



Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural
number n; + n, is the result of applying the successor function n; times to n,.

PLUS £



Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural
number n; + n, is the result of applying the successor function n; times to n,.

PLUS £ An;. An,.n; SUCC n,



Church Numerals

We can define more functions on integers:

SUCC
PLUS

A
A

An. A x f(n fx)
Any. An,y.n; SUCC n,



Church Numerals

We can define more functions on integers:

SUCC 2 An. M. . f(nfx)
PLUS £ \n;. \n,.n; SUCCh,
TIMES £

)\nl. )\nz. ny (PLUS nz) 6

[6,]



Church Numerals

We can define more functions on integers:

SUCC
PLUS
TIMES
ISZERO

> 11> 1> 1>

An. A x f(n fx)
Any. An,y.n; SUCC n,

)\nl. )\nz. ny (PLUS nz) 6

An. n (Az. FALSE) TRUE

(6]



Termination in the \-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed A-term eventually terminate under CBN evaluation?

Vclosedterme. 3e’. e = * e A€ A 7



Termination in the \-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed A-term eventually terminate under CBN evaluation?

Vclosedterme. 3e’. e = * e A€ A 7

Q = (Mxx)(Mxxx)



Termination in the \-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed A-term eventually terminate under CBN evaluation?

Vclosedterme. 3e’. e = * e A€ A 7



Recursive Functions

How would we write recursive functions, like factorial?



Recursive Functions

How would we write recursive functions, like factorial?
We’d like to write it like this...

FACT £ An. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))



Recursive Functions

How would we write recursive functions, like factorial?

We'd like to write it like this...

FACT £ An. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation thisis...

FACT £ \n.if n = O then 1 else n x FACT (n — 1)

...but this is an equation, not a definition!



Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive
equation on the previous slide.



Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive
equation on the previous slide.

Define a new function FACT that takes a function fas an argument. Then, for
“recursive” calls, it uses f f:

FACT' £ M. An.if n = Othen lelsen x ((ff) (n — 1))



Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive
equation on the previous slide.

Define a new function FACT that takes a function fas an argument. Then, for
“recursive” calls, it uses f f:

FACT' £ M. An.if n = Othen lelsen x ((ff) (n — 1))
Then define FACT as FACT' applied to itself:

FACT £ FACT' FACT'



Example

Let’s try evaluating FACT on 3...

FACT 3



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= (M. \n.ifn =0then lelsen x ((ff) (n —1))) FACT') 3



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= (M. \n.ifn =0then lelsen x ((ff) (n —1))) FACT') 3
— (An.if n = Othen 1l else n x ((FACT' FACT') (n —1)))3



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= (M. \n.ifn =0then lelsen x ((ff) (n —1))) FACT') 3
— (An.if n = Othen 1l else n x ((FACT' FACT') (n —1)))3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 — 1))



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= (M. \n.ifn =0then lelsen x ((ff) (n —1))) FACT') 3
— (An.if n = Othen 1l else n x ((FACT' FACT') (n —1)))3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 — 1))
— 3 x ((FACT' FACT') (3 — 1))



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= (M. \n.ifn =0then lelsen x ((ff) (n —1))) FACT') 3
— (An.if n = Othen 1l else n x ((FACT' FACT') (n —1)))3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 — 1))
— 3 x ((FACT' FACT') (3 — 1))
=3 x (FACT(3—1))



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= (M. \n.ifn =0then lelsen x ((ff) (n —1))) FACT') 3
— (An.if n = Othen 1l else n x ((FACT' FACT') (n —1)))3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 — 1))
— 3 x ((FACT' FACT') (3 — 1))
=3 x (FACT(3—-1))
— ...
—+3x2x1x1



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= (M. \n.ifn =0then lelsen x ((ff) (n —1))) FACT') 3
— (An.if n = Othen 1l else n x ((FACT' FACT') (n —1)))3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 — 1))
— 3 x ((FACT' FACT') (3 — 1))
=3 x (FACT(3—-1))
— ...
—+3x2x1x1
—%6



Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different
function f that takes itself as an argument and uses self-application for recursive
calls, and then definefasf f.



Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different
function f that takes itself as an argument and uses self-application for recursive
calls, and then definefasf f.

There is another way: fixed points!



Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different
function f that takes itself as an argument and uses self-application for recursive
calls, and then definefasf f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G £ M. An.ifn = 0then lelsen x (f(n— 1))



Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different
function f that takes itself as an argument and uses self-application for recursive
calls, and then definefasf f.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

G £ M. An.ifn = 0then lelsen x (f(n— 1))

Recall that if g is a fixed point of G, then G g = g. To see that any fixed pointgis a
real factorial function, try evaluating it:

g5=(Gg)5



Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different
function f that takes itself as an argument and uses self-application for recursive
calls, and then definefasf f.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

G £ M. An.ifn = 0then lelsen x (f(n— 1))

Recall that if g is a fixed point of G, then G g = g. To see that any fixed pointgis a
real factorial function, try evaluating it:

95=1(Gg)5
—*5x (g4)



Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different
function f that takes itself as an argument and uses self-application for recursive
calls, and then definefasf f.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

G £ M. An.ifn = 0then lelsen x (f(n— 1))

Recall that if g is a fixed point of G, then G g = g. To see that any fixed pointgis a
real factorial function, try evaluating it:

95=1(Gg)5
—*5x (g4)
5% ((G9)4)



Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of math. In the
A-calculus, we just need a suitable combinator...



Y Combinator

The (infamous) Y combinator is defined as
Y £ M (O F(xx)) (O F(xx))

We say that Y is a fixed point combinator because Y fis a fixed point of f (for any f).

12



Y Combinator

The (infamous) Y combinator is defined as
Y £ M (O F(xx)) (O F(xx))
We say that Y is a fixed point combinator because Y fis a fixed point of f (for any f).

What happens when we evaluate Y G under CBV?

12



Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which
is easier to use under CBV.

13



Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which
is easier to use under CBV.

Z 2 M (W F(y.xxy)) (- F(Ay.xxy))

13



Example

Let’s see Z in action, on our function G.
FACT

14



Example

Let’s see Z in action, on our function G.

FACT
= ZG

14



Example

Let’s see Z in action, on our function G.
FACT
= ZG
(M. (M (. xxy)) (M f(Ay.xxy))) G

Definition of Z

14



Example

Let’s see Z in action, on our function G.

FACT
= ZG
(M. (M (. xxy)) (M f(Ay.xxy))) G
— (MG (A xxy)) (MG (\y.xxy))

Definition of Z

14



Example

Let’s see Z in action, on our function G.

FACT

ZG

(M. (M (. xxy)) (M f(Ay.xxy))) G
(MG (A\y.xxYy)) (M. G (A\y.xxYy))

G (A (MG (\y.xxy)) (M.G(\y.xxYy))y)

L4

Definition of Z

14



Example

Let’s see Z in action, on our function G.

| I A [

FACT

ZG

(M. (M (. xxy)) (M f(Ay.xxy))) G

(MG (A\y.xxYy)) (M. G (Ay.xxY))

G (A (MG (\y.xxy)) (M.G(\y.xxYy))y)

(M. An.if n =0thenlelsen x (f(n —1)))
(A (.G (Ay.xxy)) (M. G (Ay.xxYy)) y)

Definition of Z

14



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M (. xxy)) (M f(Ay.xxy))) G Definition of Z
(MG (A\y.xxYy)) (M. G (A\y.xxYy))
G (AY. (MG (A\y.xxy)) (MG (Ay.xxy))y)
(M. An.if n =0thenlelsen x (f(n —1)))
(A (M. G (Ay.xxy)) (M. G (Ay.xxYy)) y)

An.if n =0then1

elsen x ((Ay. (M. G(A\y.xxy)) (M. G (\y.xxy))y) (n — 1))

| I A [

1



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M (. xxy)) (M f(Ay.xxy))) G Definition of Z
(MG (A\y.xxYy)) (M. G (A\y.xxYy))
G (AY. (MG (A\y.xxy)) (MG (Ay.xxy))y)
(M. An.if n =0thenlelsen x (f(n —1)))
(A (M. G (Ay.xxy)) (M. G (Ay.xxYy)) y)

An.if n =0then1

elsen x ((Ay. (M. G(A\y.xxy)) (M. G (\y.xxy))y) (n — 1))
An.ifn=0thenlelsen x (\y.(ZG)y)(n—1)

| I A [

1

Il
=



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M (. xxy)) (M f(Ay.xxy))) G Definition of Z
(MG (A\y.xxYy)) (M. G (A\y.xxYy))
G (AY. (MG (A\y.xxy)) (MG (Ay.xxy))y)
(M. An.if n =0thenlelsen x (f(n —1)))
(A (M. G (Ay.xxy)) (M. G (Ay.xxYy)) y)

An.if n =0then1

else n x ((Ay. (M. G (Ay. xxy)) (M. G (Ay.xxy))y) (n — 1))
An.ifn=0thenlelsen x (\y.(ZG)y)(n—1)
An.ifn=0thenlelsen x ((ZG) (n—1))

| I A [

1

Il
™

=



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M (. xxy)) (M f(Ay.xxy))) G Definition of Z
(MG (A\y.xxYy)) (M. G (A\y.xxYy))
G (A (MG (\y.xxy)) (M.G(\y.xxYy))y)
(M. An.if n =0thenlelsen x (f(n —1)))
(A (M. G (Ay.xxy)) (M. G (Ay.xxYy)) y)

An.if n =0then1

elsen x ((Ay. (M. G(A\y.xxy)) (M. G (\y.xxy))y) (n — 1))
=3 An.ifn=0thenlelsen x (\y.(ZG)y)(n—1)
=5 An.ifn=0thenlelsen x ((ZG)(n—1))
= An.ifn =0thenlelsen x (FACT (n — 1))

| I A [

1



Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here’s a cute

one:
Yké(LLLLLLLLLLLLLLLLLLLLLLLLLL)

where
L £ \abcdefghijklmnopgstuvwxyzr.

(r(thisisafixedpointcombinator))



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a
combinator © originally discovered by Turing.

16



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a
combinator © originally discovered by Turing.

We know that © fis a fixed point of f, so we have
Of=f(0f).



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a
combinator © originally discovered by Turing.

We know that © fis a fixed point of f, so we have

of=f(Of.

We can write the following recursive equation:
© = \M.f(©f)



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a
combinator © originally discovered by Turing.

We know that © fis a fixed point of f, so we have
Of=f(0f).

We can write the following recursive equation:
© = \M.f(©f)

Now use the recursion removal trick:
© £ ALAf(ttf)
© £ ¢



6 Example

FACT=0G

17



6 Example

FACT=06G
= (AL NEF(tE) (AL F(EEA)) G

17



6 Example

FACT=06G
= (AL NEF(tE) (AL F(EEA)) G
5 V(O F(EED) (ML F(EER) H) G

17



6 Example

FACT=06G
= (AL NEF(tE) (AL F(EEA)) G
s (MF(OE M F(EER) (MM F(EED) ) G
5 G((M\EAEF(EEH) (AL NEF(EEH) G)

17



6 Example

FACT=06G
= (AL NEF(tE) (AL F(EEA)) G
s (MF(OE M F(EER) (MM F(EED) ) G
5 G((M\EAEF(EEH) (AL NEF(EEH) G)
—G(96)

17



6 Example

FACT=0G
= (AL XMLF(tEh)) (MM F(ttF)))G
— (M F((NEMF(EED)) (A AL f(ttF) )G
— G((ALALf(tth)) (M A.f(ttf))G)
=G(©06)
= (M. An.ifn=0thenlelsen x (f(n —1))) (©G)
— An.ifn=0thenlelsen x ((©G)(n—1))
= An.if n = Othen 1 else n x (FACT (n — 1))



