CS 4110 Programming Languages & Logics

Lecture 22
Fixed-Point Combinators

Let's encode the natural numbers!

We'll write \overline{n} for the encoding of the number n. The central function we'll need is a *successor* operation:

SUCC
$$\overline{n} = \overline{n+1}$$

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{ccc} \overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\ \overline{1} & \triangleq & \lambda f. \ \lambda x. \ f x \\ \overline{2} & \triangleq & \lambda f. \ \lambda x. \ f (f x) \end{array}$$

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{rcl}
\overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\
\overline{1} & \triangleq & \lambda f. \ \lambda x. \ f \ x \\
\overline{2} & \triangleq & \lambda f. \ \lambda x. \ f \ (f \ x)
\end{array}$$

We can write a successor function that "inserts" another application of f:

$$SUCC \triangleq \lambda n$$
.

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{rcl}
\overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\
\overline{1} & \triangleq & \lambda f. \ \lambda x. \ f \ x \\
\overline{2} & \triangleq & \lambda f. \ \lambda x. \ f \ (f \ x)
\end{array}$$

We can write a successor function that "inserts" another application of f:

$$\mathsf{SUCC} \triangleq \lambda n.\,\lambda f.\,\lambda x.$$

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{rcl}
\overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\
\overline{1} & \triangleq & \lambda f. \ \lambda x. \ f \ x \\
\overline{2} & \triangleq & \lambda f. \ \lambda x. \ f \ (f \ x)
\end{array}$$

We can write a successor function that "inserts" another application of f:

$$SUCC \triangleq \lambda n. \lambda f. \lambda x. \quad n f x$$

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{rcl}
\overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\
\overline{1} & \triangleq & \lambda f. \ \lambda x. \ f \ x \\
\overline{2} & \triangleq & \lambda f. \ \lambda x. \ f \ (f \ x)
\end{array}$$

We can write a successor function that "inserts" another application of f:

$$SUCC \triangleq \lambda n. \, \lambda f. \, \lambda x. \, f(n \, f \, x)$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

PLUS ≜

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

PLUS
$$\triangleq \lambda n_1$$
. λn_2 . n_1 SUCC n_2

We can define more functions on integers:

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2

We can define more functions on integers:

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

PLUS $\triangleq \lambda n_1. \lambda n_2. n_1$ SUCC n_2
TIMES $\triangleq \lambda n_1. \lambda n_2. n_1$ (PLUS n_2) $\overline{0}$

We can define more functions on integers:

```
SUCC \triangleq \lambda n. \lambda f. \lambda x. f(n f x)

PLUS \triangleq \lambda n_1. \lambda n_2. n_1 SUCC n_2

TIMES \triangleq \lambda n_1. \lambda n_2. n_1 (PLUS n_2) \overline{0}

ISZERO \triangleq \lambda n. n (\lambda z. \text{ FALSE}) TRUE
```

1

Termination in the λ -calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ -term eventually terminate under CBN evaluation?

 \forall closed term e. $\exists e'$. $e \rightarrow^* e' \land e' \not\rightarrow$?

Termination in the λ -calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ -term eventually terminate under CBN evaluation?

$$\forall$$
 closed term $e. \exists e'. e \rightarrow^* e' \land e' \not\rightarrow ?$

No!

$$\Omega \triangleq (\lambda x. xx) (\lambda x. xx)$$

Termination in the λ -calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ -term eventually terminate under CBN evaluation?

$$\forall$$
 closed term e . $\exists e'$. $e \rightarrow^* e' \land e' \not\rightarrow$?

No!

$$\Omega \triangleq (\lambda x. xx) (\lambda x. xx)
\rightarrow (xx) \{(\lambda x. xx)/x\}
= (\lambda x. xx) (\lambda x. xx)
= \Omega$$

Recursive Functions

How would we write recursive functions, like factorial?

Recursive Functions

How would we write recursive functions, like factorial?

We'd like to write it like this...

 $FACT \triangleq \lambda n. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))$

Recursive Functions

How would we write recursive functions, like factorial?

We'd like to write it like this...

$$FACT \triangleq \lambda n$$
. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation this is...

$$\mathsf{FACT} \triangleq \lambda n. \ \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \ \mathsf{else} \ n \times \mathsf{FACT} \ (n-1)$$

...but this is an equation, not a definition!

Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT' that takes a function f as an argument. Then, for "recursive" calls, it uses f f:

$$\mathsf{FACT}' \triangleq \lambda f. \ \lambda n. \ \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \ \mathsf{else} \ n \times ((ff) \ (n-1))$$

8

Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT' that takes a function f as an argument. Then, for "recursive" calls, it uses f f:

$$\mathsf{FACT}' \triangleq \lambda f. \ \lambda n. \ \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \ \mathsf{else} \ n \times ((ff) \ (n-1))$$

Then define FACT as FACT' applied to itself:

$$FACT \triangleq FACT' FACT'$$

Let's try evaluating FACT on 3...

FACT 3

Let's try evaluating FACT on 3...

$$FACT 3 = (FACT' FACT') 3$$

Let's try evaluating FACT on 3...

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n-1))) \text{ FACT'}) 3$$

Let's try evaluating FACT on 3...

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT' FACT'})(n-1))) 3$

Let's try evaluating FACT on 3...

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT' FACT'})(n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times ((\text{FACT' FACT'})(3-1))$

Let's try evaluating FACT on 3...

$$\begin{aligned} \mathsf{FACT} \, 3 &= \left(\mathsf{FACT'} \, \mathsf{FACT'}\right) \, 3 \\ &= \left(\left(\lambda f. \, \lambda n. \, \mathsf{if} \, n = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, n \times \left(\left(f f\right) \left(n - 1\right)\right)\right) \, \mathsf{FACT'}\right) \, 3 \\ &\to \left(\lambda n. \, \mathsf{if} \, n = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, n \times \left(\left(\mathsf{FACT'} \, \mathsf{FACT'}\right) \left(n - 1\right)\right)\right) \, 3 \\ &\to \mathsf{if} \, 3 = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, 3 \times \left(\left(\mathsf{FACT'} \, \mathsf{FACT'}\right) \left(3 - 1\right)\right) \\ &\to 3 \times \left(\left(\mathsf{FACT'} \, \mathsf{FACT'}\right) \left(3 - 1\right)\right) \end{aligned}$$

Let's try evaluating FACT on 3...

```
\begin{aligned} \mathsf{FACT} \, 3 &= \big(\mathsf{FACT'}\,\mathsf{FACT'}\big) \, 3 \\ &= \big((\lambda f.\,\lambda n.\,\mathsf{if}\,\, n = 0\,\mathsf{then}\,\, 1\,\mathsf{else}\,\, n \times \big((ff)\,(n-1)\big)\big)\,\,\mathsf{FACT'}\big) \, 3 \\ &\to \big(\lambda n.\,\mathsf{if}\,\, n = 0\,\mathsf{then}\,\, 1\,\mathsf{else}\,\, n \times \big((\mathsf{FACT'}\,\,\mathsf{FACT'}\big)\,(n-1)\big)\big) \, 3 \\ &\to \mathsf{if}\,\, 3 = 0\,\mathsf{then}\,\, 1\,\mathsf{else}\,\, 3 \times \big((\mathsf{FACT'}\,\,\mathsf{FACT'}\big)\,(3-1)\big) \\ &\to 3 \times \big((\mathsf{FACT'}\,\,\mathsf{FACT'}\big)\,(3-1)\big) \\ &= 3 \times \big(\mathsf{FACT}\,(3-1)\big) \end{aligned}
```

Let's try evaluating FACT on 3...

FACT 3 = (FACT' FACT') 3
=
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n-1))) \text{ FACT'}) 3$$

 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT' FACT'})(n-1))) 3$
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times ((\text{FACT' FACT'})(3-1))$
 $\rightarrow 3 \times ((\text{FACT' FACT'})(3-1))$
= $3 \times (\text{FACT } (3-1))$
 $\rightarrow \dots$
 $\rightarrow 3 \times 2 \times 1 \times 1$

Let's try evaluating FACT on 3...

```
FACT 3 = (FACT' FACT') 3
           = ((\lambda f. \lambda n. \mathbf{if} n = 0 \mathbf{then} 1 \mathbf{else} n \times ((ff)(n-1))) \mathsf{FACT}') \mathsf{3}
           \rightarrow (\lambda n, if n=0 then 1 else n \times ((FACT'FACT')(n-1))) 3
           \rightarrow if 3 = 0 then 1 else 3 \times ((FACT' FACT') (3 - 1))
           \rightarrow 3 × ((FACT' FACT') (3 – 1))
           = 3 \times (FACT (3 - 1))
           \rightarrow \dots
           \rightarrow 3 \times 2 \times 1 \times 1
           \rightarrow * 6
```

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f' f.

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f' f.

There is another way: fixed points!

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f' f'.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

Recall that if g is a fixed point of G, then G g = g. To see that any fixed point g is a real factorial function, try evaluating it:

$$g\,5=(G\,g)\,5$$

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f' f'.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

Recall that if g is a fixed point of G, then G g = g. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (G g) 5$$

$$\rightarrow^* 5 \times (g 4)$$

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f' f'.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n.$$
 if $n = 0$ then 1 else $n \times (f(n-1))$

Recall that if g is a fixed point of G, then G g = g. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (G g) 5$$

 $\rightarrow * 5 \times (g 4)$
 $= 5 \times ((G g) 4)$

Fixed point combinators

How can we generate the fixed point of *G*?

In denotational semantics, finding fixed points took a lot of math. In the λ -calculus, we just need a suitable combinator...

Y Combinator

The (infamous) Y combinator is defined as

$$Y \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

We say that Y is a *fixed point combinator* because Y f is a fixed point of f (for any f).

Y Combinator

The (infamous) Y combinator is defined as

$$Y \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

We say that Y is a *fixed point combinator* because Y f is a fixed point of f (for any f).

What happens when we evaluate Y G under CBV?

Z Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

Z Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

$$Z \triangleq \lambda f. (\lambda x. f(\lambda y. x x y)) (\lambda x. f(\lambda y. x x y))$$

Let's see Z in action, on our function *G*.

FACT

Let's see Z in action, on our function G.

FACT

= ZG

Let's see Z in action, on our function G.

```
FACT
= ZG
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
```

Let's see Z in action, on our function G.

```
FACT

= ZG

= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G

\rightarrow (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy))
```

Let's see Z in action, on our function G.

```
FACT

= ZG

= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G

\rightarrow (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy))

\rightarrow G(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)
```

Let's see Z in action, on our function G.

```
FACT

= ZG

= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G

\rightarrow (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy))

\rightarrow G(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)

= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))

(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)
```

Let's see Z in action, on our function G.

```
FACT
      7 G
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda v. xxv))(\lambda x. G(\lambda v. xxv))
\rightarrow G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)
= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
                (\lambda v. (\lambda x. G(\lambda v. xxv)) (\lambda x. G(\lambda v. xxv)) v)
\rightarrow \lambda n if n=0 then 1
              else n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
```

1

Let's see Z in action, on our function G.

```
FACT
      7 G
 = (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda v. xxv))(\lambda x. G(\lambda v. xxv))
\rightarrow G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)
 = (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
                (\lambda v. (\lambda x. G(\lambda v. xxv)) (\lambda x. G(\lambda v. xxv)) v)
\rightarrow \lambda n if n=0 then 1
              else n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
=_{\beta} \lambda n. if n=0 then 1 else n\times(\lambda y.(ZG)y)(n-1)
```

14

Let's see Z in action, on our function G.

```
FACT
      7 G
 = (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy))(\lambda x. G(\lambda y. xxy))
\rightarrow G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)
 = (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
                (\lambda v. (\lambda x. G(\lambda v. xxv)) (\lambda x. G(\lambda v. xxv)) v)
\rightarrow \lambda n if n=0 then 1
              else n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
=_{\mathcal{B}} \lambda n. if n=0 then 1 else n \times (\lambda y. (ZG)y) (n-1)
=_{\beta} \lambda n. if n=0 then 1 else n\times ((ZG)(n-1))
```

Let's see Z in action, on our function G.

```
FACT
     7 G
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy))(\lambda x. G(\lambda v. xxy))
\rightarrow G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)
= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
              (\lambda v. (\lambda x. G(\lambda v. xxv)) (\lambda x. G(\lambda v. xxv)) v)
\rightarrow \lambda n if n=0 then 1
             else n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
      \lambda n. if n=0 then 1 else n\times(\lambda y.(ZG)y)(n-1)
     \lambda n. if n=0 then 1 else n\times ((ZG)(n-1))
       \lambda n. if n=0 then 1 else n\times (\text{FACT}(n-1))
```

Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here's a cute one:

where

```
L \triangleq \lambda abcdefghijklmnopqstuvwxyzr. 
(r(thisisafixedpointcombinator))
```

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θ *f* is a fixed point of *f*, so we have

$$\Theta f = f(\Theta f).$$

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θ *f* is a fixed point of *f*, so we have

$$\Theta f = f(\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f(\Theta f)$$

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θ *f* is a fixed point of *f*, so we have

$$\Theta f = f(\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f(\Theta f)$$

Now use the recursion removal trick:

$$\Theta' \triangleq \lambda t. \lambda f. f(t t f)$$
$$\Theta \triangleq \Theta' \Theta'$$

16

 $\mathsf{FACT} = \Theta \, \mathsf{G}$

$$FACT = \Theta G$$

$$= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G$$

$$FACT = \Theta G$$

$$= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G$$

$$\rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G$$

$$FACT = \Theta G$$

$$= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G$$

$$\rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G$$

$$\rightarrow G ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) G)$$

```
FACT = \Theta G
= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G
\rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G
\rightarrow G ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) G)
= G (\Theta G)
```

```
FACT = \Theta G
          = ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G
          \rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G
          \rightarrow G((\lambda t, \lambda f, f(t t f)) (\lambda t, \lambda f, f(t t f)) G)
          = G(\Theta G)
          = (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1))) (\Theta G)
          \rightarrow \lambda n. if n = 0 then 1 else n \times ((\Theta G)(n-1))
          =\lambda n. if n=0 then 1 else n\times (\text{FACT}(n-1))
```