CS4110

Programming Languages & Logics

Lecture 20
Continuations

Continuations

In the preceding translations, the control structure of the source
language was translated directly into the corresponding control
structure in the target language.

For example:

T\ €] = M. T[e]
Tleiel] = Tlei] Tle2l

What can go wrong with this approach?

Continuations

A snippet of code that represents “the rest of the program”
Can be used directly by programmers...

...or in program transformations by a compiler

Make the control flow of the program explicit

Also useful for defining the meaning of features like
exceptions

w

Example

Consider the following expression:

(M.x)((3%(1+2))—4)

Example

Consider the following expression:

(M.x)((3%(1+2))—4)

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v

Example

Consider the following expression:

(M.x)((3%(1+2))—4)

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v
kl =)a. ko (a — 4)

Example

Consider the following expression:

(M.x)((3%(1+2))—4)

If we make all of the continuations explicit, we obtain:
ko = Av. (M. x) v
kl =)a. ko (a — 4)
k, = A\b.ky (3% Db)

Example

Consider the following expression:

(M.x)((3%(1+2))—4)

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v

ki = Aa. ko (a —4)
ky = Ab.ky (3%b)
ky = Xc. ky (c+2)

Example

Consider the following expression:

(M.x)((3%(1+2))—4)

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v

ki = Aa. ko (a —4)
ky = Ab.ky (3%b)
ky = Xc. ky (c+2)

The original expression is equivalent to k3 1, or:

(Ac. (Ab. (Aa. (Av. (M. x)v) (a—4)) (3%b))(c+2))1

Example (Continued)

Recall that let x = e in €’ is syntactic sugar for (\x. €’) e.

Hence, we can rewrite the expression with continuations more
succinctly as

letc=1in
letb=c+2in
leta=3xbin

letv=a—4in
(M. x)v

(6]

CPS Transformation

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n] k= kn

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n] k = kn
CPS[x] k = kx

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n]lk=kn
CPS[x] k = kx
CPS[succe] k = CPS[e] (An. k (succ n))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n]k=kn
CPS[x] k = kx
CPS[succe] k = CPSJe] (An. k (succn))
CPS[e1 + ei] k = CPS[ei] (An.CPS[e;] (Am.k (n+ m)))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n]k=kn
CPS[x] k = kx
CPS[succe] k = CPSJe] (An. k (succn))
CPS[e1 + ei] k = CPS[ei] (An.CPS[e;] (Am.k (n+ m)))
CPS[. e] k =k (\x. \K'.CPS[e] k)

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n]k=kn
CPS[x] k = kx
CPS[succe] k = CPSJe] (An. k (succn))
CPS[e1 + ei] k = CPS[ei] (An.CPS[e;] (Am.k (n+ m)))
CPS[. e] k =k (\x. \K'.CPS[e] k)
CPS[e1 e:] k = CPS[ei] (M.CPS[e,] (A\v.fvk))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation, Extended

We can also translate other language features, like products:

en=---|(en,)| #le|#2e

CPS Transformation, Extended

We can also translate other language features, like products:

en=---|(en,)| #le|#2e

CPS[(e1, e2)] k = CPS[es] (A\v. CPS[e;] (Aw. k (v, w)))

CPS Transformation, Extended

We can also translate other language features, like products:

en=---|(en,)| #le|#2e

CPS|[(e1,e))] k = CPS[ei] (Av.CPS[e,] (Aw. k (v, w)))
CPS[#1e] k =CPS[e] (Av.k (#1v))

CPS Transformation, Extended

We can also translate other language features, like products:

en=---|(en,)| #le|#2e

CPS|[(e1,e))] k = CPS[ei] (Av.CPS[e,] (Aw. k (v, w)))
CPS[#1e] k = CPS[e] (Av. k (#1v))
CPS[#2e] k =CPS[e] (Av.k (#2v))

