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Review: Call-by-Value

Here are the syntax and CBV semantics of λ-calculus:

e ::= x | λx. e | e1 e2
v ::= λx. e

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β

There are two kinds of rules: congruence rules that specify
evaluation order and computation rules that specify the
“interesting” reductions.
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Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a
single occurrence of the special symbol [·] in place of a
subexpression.

E ::= [·] | E e | v E

Wewrite E[e] to mean the evaluation context Ewhere the hole
has been replaced with the expression e.
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Examples

E1 = [·] (λx. x)
E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·]
E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y))
E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))
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CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV λ-calculus with just two rules: one for
evaluation contexts, and one for β-reduction.

With this syntax:

E ::= [·] | E e | v E
The small-step rules are:

e → e′

E[e] → E[e′]

(λx. e) v → e{v/x}
β
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CBNWith Evaluation Contexts

We can also define the semantics of CBN λ-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

E ::= [·] | E e

But the small-step rules are the same:

e → e′

E[e] → E[e′]

(λx. e) e′ → e{e′/x}
β
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Definitional Translation

We know how to encode Booleans, conditionals, natural
numbers, and recursion in λ-calculus.

Can we define a real programming language by translating
everything in it into the λ-calculus?

In definitional translation, we define a denotational semantics
where the target is a simpler programming language instead of
mathematical objects.
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Multi-Argument λ-calculus

Let’s define a version of the λ-calculus that allows functions to
take multiple arguments.

e ::= x | λx1, . . . , xn. e | e0 e1 . . . en
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Multi-Argument λ-calculus

We can define a CBV operational semantics:

E ::= [·] | v0 . . . vi−1 E ei+1 . . . en

e → e′

E[e] → E[e′]

(λx1, . . . , xn. e0) v1 . . . vn → e0{v1/x1}{v2/x2} . . . {vn/xn}
β

The evaluation contexts ensure that we evaluate
multi-argument applications e0 e1 . . . en from left to right.
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Definitional Translation

Themulti-argument λ-calculus isn’t any more expressive that
the pure λ-calculus.

We can define a translation T [[·]] that takes an expression in the
multi-argument λ-calculus and returns an equivalent expression
in the pure λ-calculus.

T [[x]] = x
T [[λx1, . . . , xn. e]] = λx1. . . . λxn. T [[e]]
T [[e0 e1 e2 . . . en]] = (. . . ((T [[e0]] T [[e1]]) T [[e2]]) . . . T [[en]])

This translation curries the multi-argument λ-calculus.
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Products (Pairs) and Let

Syntax

e ::= x
| λx. e
| e1 e2
| (e1, e2)
|#1 e
|#2 e
| let x = e1 in e2

v ::= λx. e
| (v1, v2)
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Products (Pairs) and Let

Evaluation Contexts

E ::= [·]
| E e
| v E
| (E, e)
| (v, E)
|#1 E
|#2 E
| let x = E in e2
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Products (Pairs) and Let

Semantics

e → e′

E[e] → E[e′]

(λx. e) v → e{v/x}
β

#1 (v1, v2) → v1 #2 (v1, v2) → v2

let x = v in e → e{v/x}
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Products (Pairs) and Let

Translation

T [[x]] = x
T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] T [[e2]]

T [[(e1, e2)]] = (λx. λy. λf. f x y) T [[e1]] T [[e2]]
T [[#1 e]] = T [[e]] (λx. λy. x)
T [[#2 e]] = T [[e]] (λx. λy. y)

T [[let x = e1 in e2]] = (λx. T [[e2]]) T [[e1]]
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Laziness

Consider the call-by-name λ-calculus...

Syntax

e ::= x
| e1 e2
| λx. e

v ::= λx. e

Semantics

e1 → e′1
e1 e2 → e′1 e2

(λx. e1) e2 → e1{e2/x}
β
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Laziness

Translation

T [[x]] = x (λy. y)
T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] (λz. T [[e2]]) z is not a free variable of e2
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References

Syntax

e ::= x
| λx. e
| e0 e1

| ref e
| !e
| e1 := e2
| ℓ

v ::= λx. e

| ℓ
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References

Semantics

〈σ, e〉 → 〈σ′, e′〉
〈σ, E[e]〉 → 〈σ′, E[e′]〉

〈σ, (λx. e) v〉 → 〈σ, e{v/x}〉
β

ℓ 6∈ dom(σ)

〈σ, ref v〉 → 〈σ[ℓ 7→ v], ℓ〉
σ(ℓ) = v

〈σ, !ℓ〉 → 〈σ, v〉

〈σ, ℓ := v〉 → 〈σ[ℓ 7→ v], v〉
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References

Translation

...left as an exercise to the reader. ;-)

20



Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)
∀e ∈ Expsrc. if T [[e]] →∗

trg v′ then ∃v. e →∗
src v

and v′ equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)
∀e ∈ Expsrc. if e →∗

src v then ∃v′. T [[e]] →∗
trg v′

and v′ equivalent to v
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