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Review: λ-calculus

Syntax
e ::= x | e1 e2 | λx. e
v ::= λx. e

Semantics (call by value)

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β
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Example: Twice

Consider the function defined by double x = x+ x.

Now suppose we want to apply doublemultiple times:

quadruple x = double (double x)
hexadecatuple x = quadruple (quadruple x)

256uple x = hexadecatuple (hexadecatuple x)

We can abstract this pattern using a generic function:

twice ≜ λf. λx. f (f x)

Now the functions above can be written as
quadruple = twice double

hexadecatuple = twice quadruple
256uple = twice hexadecatuple

(or (twice (λx. twice x)) double)
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Evaluation

The essence of λ-calculus evaluation is the β-reduction rule, which says how to
apply a function to an argument.

(λx. e) v → e{v/x}
β-REDUCTION

But there are many different evaluation strategies, each corresponding to
particular ways of using β-reduction:
• Call-by-value
• Call-by-name
• “Full” β-reduction
• ...
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Call by value

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v1 e2 → v1 e′2

(λx. e1) v2 → e1{v2/x}
β

Key characteristics:
• Arguments evaluated fully before they are supplied to functions
• Evaluation goes from left to right (in this presentation)
• We don’t evaluate “under a λ”
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Call by name

e1 → e′1
e1 e2 → e′1 e2

(λx. e1) e2 → e1{e2/x}
β

Key characteristics:
• Arguments supplied immediately to functions
• Evaluation still goes from left to right (in this presentation)
• We still don’t evaluate “under a λ”
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Full β reduction

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
e1 e2 → e1 e′2

e → e′

λx. e → λx. e′

(λx. e1) e2 → e1{e2/x}
β

Key characteristics:
• Use the β rule anywhere...
• ...including “under a λ”...
• ...nondeterministically. 7



Confluence

Full β reduction has this property:

e

e1 e2

e′

Theorem (Confluence)
If e→∗ e1 and e→∗ e2 then e1 →∗ e′ and e2 →∗ e′ for some e′.
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Substitution

Themain workhorse in the β rule is substitution, which replaces free
occurrences of a variable xwith a term e.

However, defining substitution e1{e2/x} correctly is tricky...
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“Substitution”

As a first attempt, consider:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.e1{e/x}

What’s wrong with this definition?

It substitutes bound variables too!

(λy.y){3/y}

= (λy.3)
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“Substitution”

Okay... let’s avoid rewriting bound variables by relying on α-equivalence. We’ll
require that abstractions don’t use x, the variable we’re substituting.

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.e1{e/x} where y ̸= x

We assume away abstractions over x. (Thanks, α-equivalence!)

What’s wrong with this definition?

It leads to variable capture!

(λy.x){y/x}

= (λy.y)
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Real Substitution

The correct definition is capture-avoiding substitution:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.(e1{e/x}) where y ̸= x and y ̸∈ fv(e)

where fv(e) is the free variables of a term e.
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Encodings

The pure λ-calculus contains only functions as values. It is not exactly easy to
write large or interesting programs in the pure λ-calculus.

We can however encode objects, such as booleans, and integers.
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Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators
that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜

λx. λy. x

FALSE ≜

λx. λy. y
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Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2
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Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central function we’ll need is
a successor operation:

SUCC n = n+ 1
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Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies
f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another application of f:

SUCC ≜ λn. λf. λx. f (n f x)
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Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural
number n1 + n2 is the result of applying the successor function n1 times to n2.

PLUS ≜

λn1. λn2. n1 SUCC n2
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Church Numerals

We can define more functions on integers:

SUCC ≜ λn. λf. λx. f (n f x)
PLUS ≜ λn1. λn2. n1 SUCC n2

TIMES ≜ λn1. λn2. n1 (PLUS n2) 0
ISZERO ≜ λn. n (λz. FALSE) TRUE
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