CS4110

Programming Languages & Logics

Lecture 19
More \-calculus



Review: \-calculus

Syntax
e = xl|ee| e
v = \.e
Semantics (call by value)
e, — €] e—¢e
e1e; — €| e ve = ve

(M.e)v— e{v/x} 4



Example: Twice

Consider the function defined by double x = x + x.



Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:



Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:
quadruple x = double (double x)



Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:

quadruple x = double (double x)
hexadecatuple x = quadruple (quadruple x)



Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:

quadruple x = double (double x)
hexadecatuple x = quadruple (quadruple x)
256uple x = hexadecatuple (hexadecatuple x)



Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:

quadruple x = double (double x)
hexadecatuple x = quadruple (quadruple x)
256uple x = hexadecatuple (hexadecatuple x)

We can abstract this pattern using a generic function:
twice = M. \x. f(fx)



Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:

quadruple x = double (double x)
hexadecatuple x = quadruple (quadruple x)
256uple x = hexadecatuple (hexadecatuple x)

We can abstract this pattern using a generic function:
twice = M. \x. f(fx)

Now the functions above can be written as
quadruple = twice double
hexadecatuple = twice quadruple
256uple = twice hexadecatuple



Evaluation

The essence of A-calculus evaluation is the g-reduction rule, which says how to
apply a function to an argument.

Ow.e)v — e{v/x} [B-REDUCTION

But there are many different evaluation strategies, each corresponding to
particular ways of using 5-reduction:

¢ Call-by-value

e Call-by-name

e “Full” B-reduction



Call by value

e, — €} e, — €
e1e2—>e'1e2 Vlez—>Vle/2

(M\x.e1) vo — e {vy/x} b

Key characteristics:
e Arguments evaluated fully before they are supplied to functions
e Evaluation goes from left to right (in this presentation)
e We don’t evaluate “under a \”

(6]



Call by name

e, — €}
e1e; — e} e

(M.e1) e, — er{er/x} &

Key characteristics:
e Arguments supplied immediately to functions
e Evaluation still goes from left to right (in this presentation)
e Westill don’t evaluate “undera \”



Full 2 reduction

e, — €] e, — €,

e1e; — € e e1e, — e €,

e— e
. e — . e

(Mx.e1) e; — er{er/x} p

Key characteristics:
e Use the 5 rule anywhere...

e _.including “undera \”...
e nondeterminicticallyv



Confluence

Full 5 reduction has this property:



Confluence

Full 5 reduction has this property:

Theorem (Confluence)

Ife >*e;ande —* e, thene; —* e and e, — * €’ forsome €'.



Substitution

The main workhorse in the (3 rule is substitution, which replaces free
occurrences of a variable x with a term e.

However, defining substitution e; {e,/x} correctly is tricky...



“Substitution”

As a first attempt, consider:

Vet = |

e ify=x
y otherwise

10



“Substitution”

As a first attempt, consider:

ify =x
yle/xt = {; ot};erwise
(exex){e/x} = (ei{e/x}) (e2{e/x})



“Substitution”

As a first attempt, consider:

ye/xp =

(e1€2){e/x}
(Av.er){e/x}

e ify=x
y otherwise

(ex{e/x}) (e2{e/x})

= \y.e;{e/x}

10



“Substitution”

As a first attempt, consider:

ify =x
yle/xt = ; ot);erwise
(exex){e/x} = (ei{e/x}) (e2{e/x})

(\v.e ){e/x} = My.e{e/x}

What’s wrong with this definition?

10



“Substitution”

As a first attempt, consider:

ify =x
yle/xt = ; ot);erwise
(exex){e/x} = (ei{e/x}) (e2{e/x})

(ye){e/xt = Av.efe/x}
What’s wrong with this definition?

It substitutes bound variables too!
(Ay-y){3/y}

10



“Substitution”

As a first attempt, consider:

ify =x
yle/xt = ; ot);erwise
(exex){e/x} = (ei{e/x}) (e2{e/x})

(ye){e/xt = Av.efe/x}
What’s wrong with this definition?

It substitutes bound variables too!
Ay {3/y} = (\-3)

10



“Substitution”

Okay... let’s avoid rewriting bound variables by relying on a-equivalence. We’ll
require that abstractions don’t use x, the variable we’re substituting.

11



“Substitution”

Okay... let’s avoid rewriting bound variables by relying on a-equivalence. We’ll
require that abstractions don’t use x, the variable we’re substituting.
e ify=x

e/t = y otherwise
(exex){e/x} = (ei{e/x}) (e2{e/x})

11



“Substitution”

Okay... let’s avoid rewriting bound variables by relying on a-equivalence. We’ll
require that abstractions don’t use x, the variable we’re substituting.
e ify=x

e/t = y otherwise
(e1e2){e/xt = (er{e/x})(ex{e/x})
(\y.ei){e/x} = Ay.ei{e/x} where y # x
We assume away abstractions over x. (Thanks, a-equivalence!)



“Substitution”

Okay... let’s avoid rewriting bound variables by relying on a-equivalence. We’ll
require that abstractions don’t use x, the variable we’re substituting.
e ify=x

e/t = y otherwise
(e1e2){e/xt = (er{e/x})(ex{e/x})
(\y.ei){e/x} = Ay.ei{e/x} where y # x
We assume away abstractions over x. (Thanks, a-equivalence!)

What’s wrong with this definition?



“Substitution”

Okay... let’s avoid rewriting bound variables by relying on a-equivalence. We’ll
require that abstractions don’t use x, the variable we’re substituting.
e ify=x

e/t = y otherwise
(e1e2){e/xt = (er{e/x})(ex{e/x})
(\y.ei){e/x} = Ay.ei{e/x} where y # x
We assume away abstractions over x. (Thanks, a-equivalence!)

What’s wrong with this definition?

It leads to variable capture!

(Ayx){y/x}



“Substitution”

Okay... let’s avoid rewriting bound variables by relying on a-equivalence. We’ll
require that abstractions don’t use x, the variable we’re substituting.
e ify=x

e/t = y otherwise
(e1e2){e/xt = (er{e/x})(ex{e/x})
(\y.ei){e/x} = Ay.ei{e/x} where y # x
We assume away abstractions over x. (Thanks, a-equivalence!)

What’s wrong with this definition?

It leads to variable capture!

(A2 /x} = (\y)



Real Substitution

The correct definition is capture-avoiding substitution:

ify =x
yle/xt = ; ot);erwise
(exex){e/x} = (er{e/x})(ex{e/x})
(\v.e ){e/x} = My.(ei{e/x}) wherey # xand y ¢ fv(e)

where fv(e) is the free variables of a term e.

12



Encodings

The pure A-calculus contains only functions as values. It is not exactly easy to
write large or interesting programs in the pure A-calculus.

We can however encode objects, such as booleans, and integers.

13



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators
that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUE e, e, =€
IF FALSEe; e, = €,

14



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators
that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUE e, e, =€
IF FALSEe; e, = €,

Let’s start by defining TRUE and FALSE:

(>

TRUE
FALSE £



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators
that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUE e, e, =€
IF FALSEe; e, = €,

Let’s start by defining TRUE and FALSE:

TRUE 2 \x. \y. x
FALSE £ \x. \y.y



Booleans

We want the function IF to behave like

Ab. At. M. if bis our term TRUE then t, otherwise f

15



Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

IF2 \b. M\t M\f.btf



Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF 2 \b. At A.btf
We can also write the standard Boolean operators.

NOT £
AND £
OR £



Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF 2 \b. At A.btf
We can also write the standard Boolean operators.

NOT £ \b. b FALSE TRUE
AND = \b;. \b,. by b, FALSE
OR £ \b;. \b,. b; TRUE b,



Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central function we’ll need is
a successor operation:

SUCCn=n+1

16



Church Numerals

Church numerals encode a number n as a function that takes fand x, and applies

fto x n times.
Mo X x

Mo fx
M. f(Fx)

N | Ol
(> > >

17



Church Numerals

Church numerals encode a number n as a function that takes fand x, and applies

fto x n times.
Mo X x

Mo fx
M. f(Fx)

We can write a successor function that “inserts” another application of f:

NI =l Ol
1> 1> {1>

SUCC £ An. M. \x. f(nfx)



Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural
number n; + n, is the result of applying the successor function n; times to n,.

PLUS £

18



Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural
number n; + n, is the result of applying the successor function n; times to n,.

PLUS £ An;. An,.n; SUCC n,

18



Church Numerals

We can define more functions on integers:

SUCC
PLUS

A
A

An. A x f(n fx)
Any. An,y.n; SUCC n,

19



Church Numerals

We can define more functions on integers:

SUCC 2 An. M. . f(nfx)
PLUS £ \n;. \n,.n; SUCCh,
TIMES £

)\nl. )\nz. ny (PLUS nz) 0

19



Church Numerals

We can define more functions on integers:

SUCC
PLUS
TIMES
ISZERO

> 11> 1> 1>

An. A x f(n fx)
Any. An,y.n; SUCC n,

)\nl. )\nz. ny (PLUS nz) 0
An.n (A\z. FALSE) TRUE

19



