CS 4110 Programming Languages & Logics

One of the oldest programming languages...

One of the oldest programming languages...

...even older than general-purpose computers!

One of the oldest programming languages...

...even older than general-purpose computers!

Invented by Alonzo Church and Steven Cole Kleene in the 1930s to describe functions in an unambiguous way

One of the oldest programming languages...

...even older than general-purpose computers!

Invented by Alonzo Church and Steven Cole Kleene in the 1930s to describe functions in an unambiguous way

The " λ " comes from the symbol to denote functions

One of the oldest programming languages...

...even older than general-purpose computers!

Invented by Alonzo Church and Steven Cole Kleene in the 1930s to describe functions in an unambiguous way

The " λ " comes from the symbol to denote functions

The "calculus" comes from it being a system for calculuating by symbolic manipulation

λ -calculus: Why?

Provides the foundation of functional programming

λ -calculus: Why?

Provides the foundation of functional programming

Plays an out-sized role in PL research

λ -calculus: Why?

Provides the foundation of functional programming

Plays an out-sized role in PL research

Good for studying encodings (also known as semantics by translation)

We're all familiar with functions from mathematics...

$$f(x) = x^3$$

 $g(y) = y^3 - 2y^2 + 5y - 6$.

We're all familiar with functions from mathematics...

$$f(x) = x^3$$

 $g(y) = y^3 - 2y^2 + 5y - 6.$

What can you do with a function?

We're all familiar with functions from mathematics...

$$f(x) = x^3$$

 $g(y) = y^3 - 2y^2 + 5y - 6.$

What can you do with a function?

Apply it to an argument!

We're all familiar with functions from mathematics...

$$f(x) = x^3$$

 $g(y) = y^3 - 2y^2 + 5y - 6.$

What can you do with a function?

Apply it to an argument!

For example, $f(2) = 2^3 = 8$

4

λ -calculus

$$e ::= x$$
 Variable $| \lambda x. e$ Abstraction $| e e$ Application

1

Example: Identity function

Example: Composition of f and g

$$\lambda x. f(gx)$$

Example: Constant function returning 42

 λx . 42

Example: Application of identity function to 42

$$(\lambda x. x)$$
 42

Example: Higher-order function

$$\lambda y. \lambda x. x$$

• λ expressions extend to the right as far as possible

• λ expressions extend to the right as far as possible

Example

 $\lambda x. x \lambda y. y$ is the same as $\lambda x. x (\lambda y. y)$ and not the same as $(\lambda x. x) (\lambda y. y)$

• λ expressions extend to the right as far as possible

Example

 $\lambda x. x \lambda y. y$ is the same as $\lambda x. x (\lambda y. y)$ and not the same as $(\lambda x. x) (\lambda y. y)$

Application is left associative

• λ expressions extend to the right as far as possible

Example

 $\lambda x. x \lambda y. y$ is the same as $\lambda x. x (\lambda y. y)$ and not the same as $(\lambda x. x) (\lambda y. y)$

Application is left associative

Example

 $e_1 e_2 e_3$ is the same as $(e_1 e_2) e_3$ and not the same as $e_1 (e_2 e_3)$

Variable Binding

Definition (Free and Bound Variables)

An occurrence of a variable x is bound if there is an encosing λx . e.

Otherwise the occurrence is free

Variable Binding

Definition (Free and Bound Variables)

An occurrence of a variable x is bound if there is an encosing λx . e.

Otherwise the occurrence is free

Definition (Closed Expressions)

An expression is closed if all of its variables are bound

Example

$$\lambda x. (x (\lambda y. y a) x) y$$

Example

$$\lambda x. (x (\lambda y. y a) x) y$$

• Both occurrences of x bound

Example

$$\lambda x. (x (\lambda y. y a) x) y$$

- Both occurrences of x bound
- The occurrence of *a* is free

Example

$$\lambda x. (x (\lambda y. y a) x) y$$

- Both occurrences of x bound
- The occurrence of *a* is free
- The last occurrence of y is free

α -equivalence

The name of bound variables is not important.

Example

 λx . x is the same function as λy . y

Expressions e_1 and e_2 that differ only in the name of bound variables are called α -equivalent, written $e_1 \equiv_{\alpha} e_2$

Higher-order functions

In λ -calculus, functions are values: functions can take functions as arguments and return functions as results

In the pure λ -calculus, every value is a function, and every result is a function!

Example

$$\lambda f. f(\lambda x. x)$$

Intuition: Takes a function f and applies it to the identity

β -equivalence

When we apply a function λx . e_1 to an argument e_2 , we would like to regard it as equivalent to e_1 where every free occurrence of x has been replaced by e_2

This notion of equivalence is called β -equivalence, often written $e_1 \equiv_{\beta} e_2$

Notation: We write $e_1\{e_2/x\}$ to mean expression e_1 with all free occurrences of x replaced with e_2 .

Rewriting $(\lambda x. e_1) e_2$ into $e_1\{e_2/x\}$ is called a β -reduction.

But in general, there can be several ways to perform β -reductions...

Call-by-value

Let v range over functions, that is λx . e.

$$\frac{e_1 \to e_1'}{e_1 e_2 \to e_1' e_2} \quad \frac{e \to e'}{v e \to v e'} \quad \beta \frac{}{(\lambda x. e) v \to e\{v/x\}}$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x+1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x+1 \rightarrow (\lambda x. \lambda y. yx) 7 \lambda x. x+1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x+1 \rightarrow (\lambda x. \lambda y. yx) 7 \lambda x. x+1 \rightarrow (\lambda y. y7) \lambda x. x+1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x+1 \rightarrow (\lambda x. \lambda y. yx) 7 \lambda x. x+1$$
$$\rightarrow (\lambda y. y7) \lambda x. x+1$$
$$\rightarrow (\lambda x. x+1) 7$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x + 1 \rightarrow (\lambda x. \lambda y. yx) 7 \lambda x. x + 1$$
$$\rightarrow (\lambda y. y7) \lambda x. x + 1$$
$$\rightarrow (\lambda x. x + 1) 7$$
$$\rightarrow 7 + 1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x + 1 \rightarrow (\lambda x. \lambda y. yx) 7 \lambda x. x + 1$$
$$\rightarrow (\lambda y. y7) \lambda x. x + 1$$
$$\rightarrow (\lambda x. x + 1) 7$$
$$\rightarrow 7 + 1$$
$$\rightarrow 8$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x + 1 \rightarrow (\lambda x. \lambda y. yx) 7 \lambda x. x + 1$$
$$\rightarrow (\lambda y. y7) \lambda x. x + 1$$
$$\rightarrow (\lambda x. x + 1) 7$$
$$\rightarrow 7 + 1$$
$$\rightarrow 8$$

Note: this example uses an applied lambda calculus that also includes reduction rules for arithmetic expressions.

Call-by-name

$$rac{e_1
ightarrow e_1'}{e_1\,e_2
ightarrow e_1'\,e_2} egin{align*} eta \ \hline (\lambda x.\,e_1)\,e_2
ightarrow e_1\{e_2/x\} \end{bmatrix}$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x+1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x+1 \rightarrow (\lambda y. y (5+2)) \lambda x. x+1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x+1 \rightarrow (\lambda y. y (5+2)) \lambda x. x+1 \rightarrow (\lambda x. x+1) (5+2)$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x + 1 \rightarrow (\lambda y. y (5+2)) \lambda x. x + 1 \rightarrow (\lambda x. x + 1) (5+2) \rightarrow (5+2) + 1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x + 1 \rightarrow (\lambda y. y (5+2)) \lambda x. x + 1$$

$$\rightarrow (\lambda x. x + 1) (5+2)$$

$$\rightarrow (5+2) + 1$$

$$\rightarrow 7 + 1$$

$$(\lambda x. \lambda y. yx) (5+2) \lambda x. x + 1 \rightarrow (\lambda y. y (5+2)) \lambda x. x + 1$$

$$\rightarrow (\lambda x. x + 1) (5+2)$$

$$\rightarrow (5+2) + 1$$

$$\rightarrow 7 + 1$$

$$\rightarrow 8$$