
 

CS 4110
Programming Languages & Logics

Lecture 18
λ-calculus



λ-calculus: History

One of the oldest programming languages...

...even older than general-purpose computers!

Invented by Alonzo Church and Steven Cole Kleene in the 1930s to describe
functions in an unambiguous way

The “λ” comes from the symbol to denote functions

The “calculus” comes from it being a system for calculuating by symbolic
manipulation
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λ-calculus: Why?

Provides the foundation of functional programming

Plays an out-sized role in PL research

Good for studying encodings (also known as semantics by translation)
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What is a function?

We’re all familiar with functions frommathematics...

f(x) = x3

g(y) = y3 − 2y2 + 5y− 6.

What can you do with a function?

Apply it to an argument!

For example, f(2) = 23 = 8
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λ-calculus

e ::= x Variable

| λx. e Abstraction

| e e Application
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Example: Identity function

λx. x
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Example: Composition of f and g

λx. f (g x)
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Example: Constant function returning 42

λx. 42
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Example: Application of identity function to 42

(λx. x) 42
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Example: Higher-order function

λy. λx. x
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Syntactic Conventions

• λ expressions extend to the right as far as possible

Example
λx. x λy. y is the same as λx. x (λy. y) and not the same as (λx. x) (λy. y)

• Application is left associative

Example
e1 e2 e3 is the same as (e1 e2) e3 and not the same as e1 (e2 e3)
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Variable Binding

Definition (Free and Bound Variables)
An occurrence of a variable x is bound if there is an encosing λx. e.
Otherwise the occurrence is free

Definition (Closed Expressions)
An expression is closed if all of its variables are bound
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Example: free and bound variables

Example

λx. (x (λy. y a) x) y

• Both occurrences of x bound
• The occurrence of a is free
• The last occurrence of y is free
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α-equivalence

The name of bound variables is not important.

Example
λx. x is the same function as λy. y

Expressions e1 and e2 that differ only in the name of bound variables are called
α-equivalent, written e1 ≡α e2
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Higher-order functions

In λ-calculus, functions are values: functions can take functions as arguments
and return functions as results

In the pure λ-calculus, every value is a function, and every result is a function!

Example

λf. f (λx. x)
Intuition: Takes a function f and applies it to the identity
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β-equivalence

When we apply a function λx. e1 to an argument e2, we would like to regard it as
equivalent to e1 where every free occurrence of x has been replaced by e2

This notion of equivalence is called β-equivalence, often written e1 ≡β e2

Notation: We write e1{e2/x} to mean expression e1 with all free occurrences of x
replaced with e2.

Rewriting (λx. e1) e2 into e1{e2/x} is called a β-reduction.

But in general, there can be several ways to perform β-reductions...
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Call-by-value

Let v range over functions, that is λx. e.

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′
β

(λx. e) v → e{v/x}
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Example reductions

(λx. λy. y x) (5 + 2) λx. x + 1

→ (λx. λy. y x) 7 λx. x + 1
→ (λy. y 7) λx. x + 1
→ (λx. x + 1) 7
→ 7 + 1
→ 8

Note: this example uses an applied lambda calculus that also includes reduction
rules for arithmetic expressions.
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Call-by-name

e1 → e′1
e1 e2 → e′1 e2

β
(λx. e1) e2 → e1{e2/x}

19



Example reduction

(λx. λy. y x) (5 + 2) λx. x + 1

→ (λy. y (5 + 2)) λx. x + 1
→ (λx. x + 1) (5 + 2)
→ (5 + 2) + 1
→ 7 + 1
→ 8
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