CS 4110

Programming Languages & Logics

Lecture 18
A-calculus
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A-calculus: History

One of the oldest programming languages...
...even older than general-purpose computers!

Invented by Alonzo Church and Steven Cole Kleene in the 1930s to describe
functions in an unambiguous way

The “A\” comes from the symbol to denote functions

The “calculus” comes from it being a system for calculuating by symbolic
manipulation
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A-calculus: Why?

Provides the foundation of functional programming

Plays an out-sized role in PL research

Good for studying encodings (also known as semantics by translation)
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What is a function?

We’re all familiar with functions from mathematics...

fix) = x*
9(y) =y’ -2y +5y 6.
What can you do with a function?

Apply it to an argument!

For example, f(2) =23 =8



A-calculus

e = X Variable

AX. € Abstraction

| ee Application



Example: Identity function

AX. X



Example: Composition of fand g

M. (g x)



Example: Constant function returning 42

AX. 42



Example: Application of identity function to 42

(Ax. x) 42



Example: Higher-order function

AY. AX. X

10
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Syntactic Conventions

* )\ expressions extend to the right as far as possible

M. x \y.yis the same as Ax. x (\y. y) and not the same as (\x. x) (\y.y)

e Application is left associative

e1 e, esisthe same as (e; e,) e3 and not the same as e; (e, €3)
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Variable Binding

Definition (Free and Bound Variables)

An occurrence of a variable x is bound if there is an encosing \x. e.
Otherwise the occurrence is free
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Variable Binding

Definition (Free and Bound Variables)

An occurrence of a variable x is bound if there is an encosing \x. e.
Otherwise the occurrence is free

Definition (Closed Expressions)

An expression is closed if all of its variables are bound
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Example: free and bound variables

M. (x (A\y.ya)x)y
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Example: free and bound variables

M. (x(\y.ya)x)y

e Both occurrences of x bound
e The occurrence of g is free
e The last occurrence of y is free

13



a-equivalence

The name of bound variables is not important.

Example

Ax. x is the same function as \y. y

Expressions e; and e, that differ only in the name of bound variables are called
a-equivalent, writtene; =, e;
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Higher-order functions

In A-calculus, functions are values: functions can take functions as arguments
and return functions as results

In the pure A-calculus, every value is a function, and every result is a function!

Example

A (AX. X)

Intuition: Takes a function fand applies it to the identity
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B-equivalence

When we apply a function \x. e; to an argument e,, we would like to regard it as
equivalent to e; where every free occurrence of x has been replaced by e,

This notion of equivalence is called 3-equivalence, often written e; =3 e,

Notation: We write e;{e,/x} to mean expression e; with all free occurrences of x
replaced with e,.

Rewriting (\x. e;) e, into e;{e,/x} is called a S-reduction.

But in general, there can be several ways to perform -reductions...



Call-by-value

Let v range over functions, that is \x. e.

/ /
e; — €} e—e

e1e; —~eje;  ve—ve

(Mx.e)v — e{v/x}
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Example reductions

(M. yx)(5+2) .x+1
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Example reductions

(MAY.yx)(5+2) Mx+1 = (MDA yx) T x+1
— (AW yT) M. x+1
— (Mx+1)7
—T7+1
— 8

Note: this example uses an applied lambda calculus that also includes reduction
rules for arithmetic expressions.



Call-by-name

e; — €]

e16, — e e

B

()\X 6‘1) € — el{ez/x}
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Example reduction
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