CS 4110

Programming Languages & Logics

Lecture 16
Separation Logic

IMP with Heaps

Let’s extend IMP with standard commands for manipulating data on the heap.

Note: for today’s lecture I'll write e instead of a for arithmetic expressions.

c = .
| x:=neu(e)
I free(e)
| ;

State = Store + Heap

A state s now has two parts: (o, h) where:
e g :Var — Zisthe store as before, and

e h:Addr — Zis the heap, where an Addr is the type of pointers (and left
abstract, though in an implementation would just be an integer).

The big-step semantics for commands becomes:
(o,h,c) |} (/1)
Note: the big-step semantics for expressions remains,

(o,e) v

as evaluating expressions does not require access to the heap.

Big-Step Semantics: Basic Commands

SKIP

(o, h, skip) | (o, h)

Big-Step Semantics: Basic Commands

SKIP

(o, h, skip) | (o, h)

(o,e) | v
(o,h,x:=e) | (o[x — V], h)

ASSIGN

Big-Step Semantics: Basic Commands

SKIP

(o, h, skip) | (o, h)

(o,e) | v

(o,h,x :=¢) | (o[x— V], h) ASSIGN

(o,h,c1) { (o1,) (01, h1,¢2) I (02, hy)
<U’h,C1§C2> () (0-27h2)

SEQ

Semantics: Conditionals and Loops

(o,b) || true (o,h,c1) I (o', h)

[F-T
(o, h,ifbthencelsecy,) | (/. h)

(o,b) || false (o,h,c) | (o', h)

IF-FALSE
(o,h,if bthenc, elsec,,) | (o', h')

Semantics: Conditionals and Loops

(o,b) || true (o,h,c1) I (o', h)

[F-T
(o, h,ifbthencelsecy,) | (/. h)

(o,b) || false (o,h,c) | (o', h)

IF-FALSE
(o,h,if bthenc, elsec,,) | (o', h')

(o,b) | false

- WHILE-FALSE
(whilebdoc,) || (o,h)

(o,b) || true (o,h,c) | (o1,h1)
(01, h1, while bdo c) || (02, h,)

<O', h, while b do C> »U« (0'2, hz)

WHILE-TRUE

Semantics: Load and Store

(o0,)yp pedom(h) h(p)=v

(o hx—e) b (o v hy

Semantics: Load and Store

(0,e)bp pedom(h) h(p)=v

(o hx—e) b (o v hy

(o,eny I p (0,e0) 4 v pedom(h)
(o,h,xe; :=ey) || (o, h[p — Vv])

STORE

Semantics: New and Free

(o,e) | v p & dom(h)

(0, h,x := new(e)) |} (o[x — p], h[p — V]) NEW

Semantics: New and Free

(o,e) | v p ¢ dom(h)

(0, h,x := new(e)) |} (o[x — p], h[p — V]) NEW

(o,e) Il p p & dom(h)
(o, h,free(e)) || (o, h\ {p}

FREE
)

Rule of Constancy

In standard Hoare logic, the following rule is admissible:

{P} c{Q} fv(R)Nmod(c)=10

(PAR}c{QAR) const

where
e fv(R)is the free variables of R.
e mod(c) is the set of variables that ¢ may modify.

Free Variables

The function fv(P) returns the set of program variables that occur free in an
assertion P.

fviar < @) = fv(ar) Ufv(ay)
f(PAQ) = fv(P)Ufv(Q)
fu(Pv Q) = fv(P)Ufv(Q)
fuP = Q) = f(P)Uf(Q)
fv(=P) = fv(P)
fu(Vi.P) = fv(P)\ {i}
fv(di.P) = fv(P)\ {i}

Modified Variables

mod(skip)
mod(x := e)
mod(cy; ¢;)
mod(if b then c; else ¢,)
mod(while b do c)
mod(x := xe)
mod(xe; == e,)
mod(x := new(e))
mod(free(e))

0

{x}

mod(c1) U mod(c,)
mod(c;) U mod(c,)
mod(c)

{x}

0

{x}
0

Example: Constancy

Consider the Hoare triple:

{x>0}x=x+1{x>1}

With CONSTANCY, we can strengthen pre- and post-conditions with an assertion:

{x>0ANy=0}x=x+1{x>1Ay=0}

11

Example: Constancy

Consider the Hoare triple:
{x>0}x=x+1{x>1}
With CONSTANCY, we can strengthen pre- and post-conditions with an assertion:

{x>0ANy=0}x=x+1{x>1Ay=0}
Why is this allowed?
fu(y =0) = {y} mod(x :==x+ 1) = {x}

As fv(y = 0) N mod(x := x + 1) = (), the CONSTANCY rule applies.

Example: Constancy

Now consider:
{x>0}y:=y+1{x>0}

Suppose we try to add y = 0 as a constant assertion:

{x>0ANy=0}y=y+1{x>0Ay=0}

12

Example: Constancy

Now consider:
{x>0}y:=y+1{x>0}

Suppose we try to add y = 0 as a constant assertion:

{x>0ANy=0}y=y+1{x>0Ay=0}

Here,
fly=0)={y} mod(y:=y+1)={y}

So fv(y = 0) N mod(y := y + 1) # (. Indeed, the triple is invalid: the assignment
breaks the constant property y = 0.

Heap Assertions in Separation Logic

Now let’s add some assertions for describing the heap.

H,J,K:::emp|[P] | el<—>e2|H1*H2|H1/)(\H2|H1\WH2 |VXH|EIXH

13

Heap Assertions in Separation Logic

Now let’s add some assertions for describing the heap.
H,J,K:=emp | [P]| e e, | HyxHy | Hy AN Ha | HL W Hy | V¥x. H | 3x. H

Intuitively:
e emp : heap is empty,
e [P] : heap is empty and P holds,
® e; < e, : heap consists of exactly one cell with pointer e; and value e,,

® H; % H, : heap can be split into two disjoint pieces, one satisfying H; and the
other satisfying H,,

e H; M H, and H; \W H, are heap assertion versions of the standard boolean
connectives, and

Vx. Hand dx. H : are heap assertion versions of the standard quantifiers.

Heap Assertions in Separation Logic

Now let’s add some assertions for describing the heap.
H,J,K:=emp | [P] | e < e, | HixHy | Hy AN Hy | HL W Hy | V¥x. H | 3x. H

Formally:

h=10

h=0ANo =P

h ={(p,v)} where (o,e,), | pand (o,e,), |} v
3hy,hy.h=hyWhy A (o,hy) =1 PLA(0,h)) Py

(0,h) =1 Hyand (0, h) = H,
(0,h) =1 Hyor (o, h) = H,
(0,h) Fixsy Hforallv
(0, h) Fipxsy Hforsomev

Constancy and Aliasing

Abbreviation: write x — — as shorthand for Jv. x — v

14

Constancy and Aliasing

Abbreviation: write x — — as shorthand for Jv. x — v

Consider the following application of CONSTANCY

{x—= —}sx:=4{x— 4}

14

Constancy and Aliasing

Abbreviation: write x — — as shorthand for Jv. x — v

Consider the following application of CONSTANCY

{x—= —}sx:=4{x— 4}

x—=—-—ANy—=3}tsx:=4{x—=>4ANy— 3}

14

Constancy and Aliasing

Abbreviation: write x — — as shorthand for Jv. x — v

Consider the following application of CONSTANCY

{x—= —}sx:=4{x— 4}
x—=—-—ANy—=3}tsx:=4{x—=>4ANy— 3}

We have
fuly — 3) = {y} mod(x := 4) = {x}

Problem: but what if x and y are aliases that point to the same heap location?!

Separation Logic

We want something like the CONSTANCY rule that supports local reasoning
involving the heap.

This is exactly what the FRAME rule does:

F{H}c{J} fvs(K)YN modc=10]

F
F {(Hx K} c {J% K} RAME

Separation Logic Triples

Definition (Hoare Triple (Total Correctness))

A Hoare logic triple is valid, written =yoare {H} ¢ {J}, if forall o, h, and I, if
o,h =/ Hthen (o, h,c) |} (¢/,h)and o', 0 |, J

16

Separation Logic Triples

Definition (Hoare Triple (Total Correctness))

A Hoare logic triple is valid, written =yoare {H} ¢ {J}, if forall o, h, and I, if
o,h =/ Hthen (o, h,c) |} (¢/,h)and o', 0 |, J

Definition (Separation Logic Triple (Total Correctness))

A separation logic triple is valid, written = {H} ¢ {J}, if for all K we have
Fhoare {H* K} c {Jx K}

16

Separation Logic Triples: Alternate Definition

Write h; L h, to mean that h; and h; are disjoint heaps.

Definition (Separation Logic Triple (Total Correctness))

A Hoare logic triple is valid, written =yoare {H} ¢ {J}, if forall o, hy, h, and 1, if
o,h; = Hand h; L h; then (o, hy Why,c) | (o/,hiWhy)and o’ b} = J

17

Separation Logic Triples: Alternate Definition

It should be clear that the FRAME rule is sound...

F{H}c{J} fvs(KYN modc=10

FRAME
F{H* K} c{J*xK}

... as the notion of correctness “bakes it in”

Definition (Separation Logic Triple (Total Correctness))

A separation logic triple is valid, written = {H} ¢ {J}, if for all K we have
FHoare {H* K} c {J % K}

18

Small Axioms for Heap Commands

{e=seltx=xe{|x=€]xe—¢€}

LoAD

19

Small Axioms for Heap Commands

{e=seltx=xe{|x=€]xe—¢€}

STORE

{x—=—-}xx=e{x—e}

LoAD

19

Small Axioms for Heap Commands

{e=seltx=xe{|x=€]xe—¢€}

STORE

{x—=—-}xx=e{x—e}

{emp } x:=new(e) {[x=p]xp — e}

LoAD

ALLoC

19

Small Axioms for Heap Commands

LoAD

{e=seltx=xe{|x=€]xe—¢€}

STORE

{x—=—-}xx=e{x—e}

ALLoC

{emp } x:=new(e) {[x=p]xp — e}

FREE

{e— —} free(e) {emp}

19

