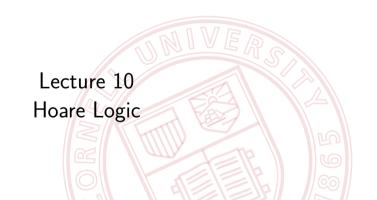
# CS 4110 Programming Languages & Logics



#### Overview

#### Last time

- Assertion language: P
- Assertion satisfaction:  $\sigma \models_I P$
- Assertion validity:  $\models P$
- Partial/total correctness statements:  $\{P\}$  c  $\{Q\}$  and [P] c [Q]
- Partial correctness satisfaction  $\sigma \models_I \{P\} \ c \ \{Q\}$
- Partial correctness validity:  $\models \{P\} \ c \ \{Q\}$

#### Today

- Hoare Logic
- Examples
- Metatheory

#### Review

#### Definition (Partial correctness satisfaction)

A partial correctness statement  $\{P\}$  c  $\{Q\}$  is satisfied by store  $\sigma$  and interpretation I, written  $\sigma \vDash_I \{P\}$  c  $\{Q\}$ , if:

$$\forall \sigma'$$
. if  $\sigma \vDash_{l} P$  and  $\mathcal{C}\llbracket c \rrbracket \ \sigma = \sigma'$  then  $\sigma' \vDash_{l} Q$ 

#### Definition (Partial correctness validity)

A partial correctness statement is valid (written  $\vDash \{P\}\ c\ \{Q\}$ ), if it is satisfied by any store and interpretation:  $\forall \sigma, I.\ \sigma \vDash_I \{P\}\ c\ \{Q\}$ .

3

## Hoare Logic

Want a way to prove partial correctness statements valid...

... without having to consider explicitly every store and interpretation!

## Hoare Logic

Want a way to prove partial correctness statements valid...

... without having to consider explicitly every store and interpretation!

Idea: Develop a formal *proof system* as an inductively-defined set! Every member of the set will be a valid partial correctness statement.

We'll define a judgment of the form  $\vdash \{P\} \ c \ \{Q\}$  using inference rules.

4

# Hoare Logic: Skip

 $\overline{\vdash \{P\} \text{ skip } \{P\}}$  Skip

$$\overline{\vdash \{P[a/x]\} \ x := a \ \{P\}} \ \text{Assign}$$

$$\overline{\vdash \{P[a/x]\} \ x := a \ \{P\}} \ \text{Assign}$$

Notation: P[a/x] denotes substitution of a for x in P

$$\frac{}{\vdash \{P[a/x]\} \ x := a \ \{P\}} \ \text{Assign}$$

Notation: P[a/x] denotes substitution of a for x in P

$$\{ \} x := 5 \{x = 5\}$$

$$\frac{}{\vdash \{P[a/x]\} \ x := a \ \{P\}} \ \text{Assign}$$

Notation: P[a/x] denotes substitution of a for x in P

$${5 = 5} \ x := 5 \ {x = 5}$$

$$\frac{}{\vdash \{P\} \ x := a \ \{P[a/x]\}} \ \text{BrokenAssign}$$

$$\frac{}{\vdash \{P\} \ x := a \ \{P[a/x]\}} \ ^{\text{BrokenAssign}}$$
 
$$\{x = 0\} \ x := 5 \ \{$$

$$\frac{}{\vdash \{P\} \ x := a \ \{P[a/x]\}} \ ^{\text{BrokenAssign}}$$
 
$$\{x = 0\} \ x := 5 \ \{5 = 0\}$$

$$\frac{}{\vdash \{P\} \ x := a \ \{P[a/x]\}} \text{ BrokenAssign}$$
 
$$\{x = 0\} \ x := 5 \ \{5 = 0\}$$

$$\overline{\vdash \{P\} \; x := a \; \{P[x/a]\}} \; \text{BrokenAssign2}$$

$$\frac{}{\vdash \{P\} \ x := a \ \{P[a/x]\}} \text{ BrokenAssign}}$$
 
$$\{x = 0\} \ x := 5 \ \{5 = 0\}$$
 
$$\frac{}{\vdash \{P\} \ x := a \ \{P[x/a]\}} \text{ BrokenAssign2}}$$

$${x = 0} \ x := 5 {$$

$$\frac{}{\vdash \{P\} \ x := a \ \{P[a/x]\}} \text{ BrokenAssign}$$
$$\{x = 0\} \ x := 5 \ \{5 = 0\}$$

$$\frac{}{\vdash \{P\} \ x := a \ \{P[x/a]\}} \text{ BrokenAssign2}$$
$$\{x = 0\} \ x := 5 \ \{x = 0\}$$

## Hoare Logic: Assignment

Here's the *correct* rule again:

$$\overline{\vdash \{P[a/x]\} \ x := a \ \{P\}} \ \text{Assign}$$

$${5 = 5} \ x := 5 \ {x = 5}$$

#### Hoare Logic: Sequence

$$\frac{\vdash \{P\} \ c_1 \ \{R\} \quad \vdash \{R\} \ c_2 \ \{Q\}}{\vdash \{P\} \ c_1; c_2 \ \{Q\}} \ SEQ$$

## Hoare Logic: Conditionals

$$\frac{\vdash \{P \land b\} \ c_1 \ \{Q\} \qquad \vdash \{P \land \neg b\} \ c_2 \ \{Q\}}{\vdash \{P\} \ \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \ \{Q\}} \ \operatorname{If}$$

#### Hoare Logic: Loops

$$\frac{\vdash \{P \land b\} \ c \ \{P\}}{\vdash \{P\} \text{ while } b \text{ do } c \ \{P \land \neg b\}} \text{ WHILE}$$

P works as a loop invariant.

#### Hoare Logic: Consequence

$$\frac{\models P \Rightarrow P' \qquad \vdash \{P'\} \ c \ \{Q'\} \qquad \models Q' \Rightarrow Q}{\vdash \{P\} \ c \ \{Q\}}$$
 Consequence

Recall:  $\models P \Rightarrow P'$  denotes assertion validity.

It's always free to strengthen pre-conditions and weaken post-conditions.

## Example: Factorial

```
\{x = n \land n > 0\}

y := 1;

while x > 0 do

(y := y * x;

x := x - 1)

\{y = n!\}
```

Soundness: If we can prove it, then it's actually true.

Completeness: If it's true, then a proof exists.

#### Definition (Soundness)

If 
$$\vdash \{P\}$$
  $c$   $\{Q\}$  then  $\models \{P\}$   $c$   $\{Q\}$ .

#### Definition (Completeness)

If 
$$\models \{P\} \ c \ \{Q\} \ \text{then} \vdash \{P\} \ c \ \{Q\}.$$

Today: Soundness

Next time: Relative completeness

#### Theorem (Soundness)

$$\mathit{If} \vdash \{\mathit{P}\} \ \mathit{c} \ \{\mathit{Q}\} \ \mathit{then} \models \{\mathit{P}\} \ \mathit{c} \ \{\mathit{Q}\}.$$

#### Theorem (Soundness)

$$If \vdash \{P\} \ c \ \{Q\} \ then \models \{P\} \ c \ \{Q\}.$$

#### Proof.

By induction on derivation of  $\vdash \{P\}$  c  $\{Q\}$ ...

#### Definition (Completeness)

If 
$$\models \{P\} \ c \ \{Q\} \ \text{then} \vdash \{P\} \ c \ \{Q\}.$$

#### Definition (Completeness)

If 
$$\models \{P\} \ c \ \{Q\} \ \text{then} \vdash \{P\} \ c \ \{Q\}.$$

CONSEQUENCE spoils completeness:

$$\frac{\models P \Rightarrow P' \qquad \vdash \{P'\} \ c \ \{Q'\} \qquad \models Q' \Rightarrow Q}{\vdash \{P\} \ c \ \{Q\}}$$

#### Definition (Completeness)

If 
$$\models \{P\} \ c \{Q\}$$
 then  $\vdash \{P\} \ c \{Q\}$ .

CONSEQUENCE spoils completeness:

$$\frac{\models P \Rightarrow P' \qquad \vdash \{P'\} \ c \ \{Q'\} \qquad \models Q' \Rightarrow Q}{\vdash \{P\} \ c \ \{Q\}}$$

#### Definition (Relative completeness)

Hoare logic is *no more incomplete* than those implications.