CS 4110

Programming Languages & Logics

Lecture 12
Axiomatic Semantics



Kinds of Semantics

Operational Semantics

e Describes how programs compute

e Relatively easy to define

e Close connection to implementations



Kinds of Semantics

Operational Semantics

e Describes how programs compute

e Relatively easy to define

e Close connection to implementations
Denotational Semantics

e Describes what programs compute

e Solid mathematical foundation

e Simplifies equational reasoning

N



Kinds of Semantics

Operational Semantics

e Describes how programs compute

e Relatively easy to define

e Close connection to implementations
Denotational Semantics

e Describes what programs compute

e Solid mathematical foundation

e Simplifies equational reasoning
Axiomatic Semantics

e Describes the properties programs satisfy
e Useful for reasoning about correctness

N



Axiomatic Semantics

To define an axiomatic semantics we need:
e A language for expressing program properties
e Proof rules for establishing the validity of properties with respect to programs

w



Axiomatic Semantics

To define an axiomatic semantics we need:

e A language for expressing program properties

e Proof rules for establishing the validity of properties with respect to programs
Assertions:

e The value of x is greater than 0

e The value of yis even

e The value of zis prime

w



Axiomatic Semantics

To define an axiomatic semantics we need:

e A language for expressing program properties
e Proof rules for establishing the validity of properties with respect to programs
Assertions:

e The value of x is greater than 0

e The value of yis even

e The value of zis prime

Assertion Languages:

e First-order logic: ¥V, 3,A,V,x=y,R(x),...
e Temporal or modal logic: [, o, X, U, F, ..

e Special-purpose logics:  Alloy, Sugar, Z3 etc.



Applications

e Proving correctness
e Documentation

e Test generation

e Symbolic execution

e Translation validation
e Bug finding

e Malware detection



Pre-Conditions and Post-conditions

Assertions are often used (informally) in code

/* Precondition: 0 <=i < A.length */
/* Postcondition: returns A[i] */
public int get(int i) {

return Ali];

}

These assertions are useful as documentation or run-time checks, but there is no
guarantee they are correct.

Idea: Let's make this rigorous by defining the semantics of the language in terms
of pre-conditions and post-conditions!



Partial Correctness

Here's the IMP syntax:

a € Aexp at=x|n|la+a|a xa
b € Bexp b ::= true | false | a; < a
c € Com cu=skip|x:=al|ca;o

| if b then ¢, else ¢, | while b do ¢

A partial correctness statement is a triple:
{P} c{Q}

Meaning: If P holds, and then c executes (and terminates), then @ holds
afterward.



Partial Correctness

{x=21} y:=xx2 {y=42}



Partial Correctness

{x=21} y:=xx2 {y=42}

{x=n} y:=xx2{y=2n}



Question

Given the following partial correctness specification,
{P} while x < 0do x:= x+1 {x> 0}
which P makes it valid?

A. true

false

x>0

All of the above.
None of the above.

mOU O w

(e}



Question

Given the following partial correctness specification,
{P} while x < 0 do x:= x+ 1 {false}

which P makes it valid?

A. true

false

x>0

All of the above.
None of the above.

mOU O w



Total Correctness

Note that partial correctness specifications don't ensure that the program will
terminate—this is why they are called “partial.”

Sometimes we need to know that the program will terminate.

A total correctness statement is a triple written with square brackets:
[Plcl@Q]

Meaning: if P holds, then ¢ will terminate and @ holds after c.

We'll focus mostly on partial correctness.



Example: Partial Correctness

{foo = 0 A bar = i}

baz := 0;
while foo =# bar
do
baz := baz — 2;
foo :=foo+1

{baz = -2 x i}

Intuition: if we start with a store o that maps foo to 0 and bar to an integer i/,
and if the execution of the command terminates, then the final store ¢’ will map
baz to —2i.



Example: Total Correctness

[foo =0Abar=iAi>0]

baz := 0;
while foo =# bar
do
baz := baz — 2;
foo :=foo+1

[baz = —2 X |

Intuition: if we start with a store o that maps foo to 0 and bar to a non-negative
integer i, then the execution of the command will terminate in a final store ¢’ will

map baz to —2i.



Another Example

{foo = 0 A bar = i}

baz := 0;
while baz # bar
do
baz := baz 4 foo;
foo :=foo + 1

{baz = i}

Is this partial correctness statement valid?

13



Assertions

We define a new language syntax to write assertions:

i € LVar
achAexp:=x|iln|a+alaxa

P, Q € Assn ::= true | false

|31<32
|P1/\P2|P1\/P2’P1:>P2
| =P| Vi P|3i P

Assertions can introduce logical variables, which are different from program
variables.
Note that every boolean expression b is also an assertion.

14



Satisfaction

Next we'll define what it means for a store o to satisfy an assertion.

To do this, we need an interpretation for the logical variables, which is like the
store for program variables:

/: LVar — Int

15



Satisfaction

Next we'll define what it means for a store o to satisfy an assertion.

To do this, we need an interpretation for the logical variables, which is like the
store for program variables:

/: LVar — Int

And a denotation function for assertion arithmetic expressions, A;[a], that's
almost the same as for ordinary arithmetic:

Ailn](e,) =n

Ailx(o. 1) = o(x)

Aill(o, 1) = 1)

Ailar + a2](o, ) = Aila1](o, 1) + Aila2] (o, 1)

7



Satisfaction

Next we define the satisfaction relation for assertions, F;:

Definition (Assertation satisfaction)

o E true (always)

oFra; < a if AjJai](o, 1) < Afa](o, )
ok Py AP if o F/ Py and 0 F; P

ocF PV P, if o Pyorok P

ocF Pr= P, if o Pyorok P

ok —P if o 7, P

o E Vi P if Yk € Int. 0 Eypyyg P

o ':/ di. P if 3k € Int. o ':I[i»—>k] P

16



Satisfaction

Next we define what it means for a command c to satisfy a partial correctness
statement.

Definition (Partial correctness statement satisfiability)

A partial correctness statement {P} ¢ {Q} is satisfied in store o and
interpretation /, written o =, {P} ¢ {Q}, if:

Vo'. if 0 £/ P and C[cJo = o' then ¢’ F; Q

17



Validity

Definition (Assertion validity)

An assertion P is valid (written F P) if it is valid in any store, under any
interpretation: Vo,l. o F; P

Definition (Partial correctness statement validity)

A partial correctness triple is valid (written £ {P} ¢ {Q}), if it is valid in any
store and interpretation: Vo, I. o F, {P} ¢ {Q}.

Now we know what we mean when we say “assertion P holds” or “partial
correctness statement {P} ¢ {Q} is valid.

18



Proving Specifications

How do we show that {P} ¢ {Q} holds?

We know that {P} ¢ {Q} is valid if it holds for all stores and interpretations:
Vo,l. o 1 {P} c{Q}.

Showing that o ; {P} ¢ {Q} requires reasoning about the denotation of ¢
(because of the definition of satisfaction).



Proving Specifications

How do we show that {P} ¢ {Q} holds?

We know that {P} ¢ {Q} is valid if it holds for all stores and interpretations:
Vo,l. o 1 {P} c{Q}.

Showing that o ; {P} ¢ {Q} requires reasoning about the denotation of ¢
(because of the definition of satisfaction).

We can do this manually, but there is a better way!

We can use a set of inference rules and axioms, called Hoare rules, to directly
derive valid partial correctness statements without having to reason about stores,
interpretations, and the execution of c.



