
 

CS 4110
Programming Languages & Logics

Lecture 12
Axiomatic Semantics



Kinds of Semantics

Operational Semantics
• Describes how programs compute
• Relatively easy to define
• Close connection to implementations

Denotational Semantics
• Describes what programs compute
• Solid mathematical foundation
• Simplifies equational reasoning
Axiomatic Semantics
• Describes the properties programs satisfy
• Useful for reasoning about correctness
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Axiomatic Semantics

To define an axiomatic semantics we need:
• A language for expressing program properties
• Proof rules for establishing the validity of properties with respect to programs

Assertions:
• The value of x is greater than 0
• The value of y is even
• The value of z is prime
Assertion Languages:
• First-order logic: ∀, ∃,∧,∨, x = y,R(x), . . .
• Temporal or modal logic: □, ⋄,X,U, F, ...
• Special-purpose logics: Alloy, Sugar, Z3, etc.
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Applications

• Proving correctness
• Documentation
• Test generation
• Symbolic execution
• Translation validation
• Bug finding
• Malware detection
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Pre-Conditions and Post-conditions

Assertions are often used (informally) in code

/* Precondition: 0 <= i < A.length */
/* Postcondition: returns A[i] */
public int get(int i) {

return A[i];
}

These assertions are useful as documentation or run-time checks, but there is no
guarantee they are correct.
Idea: Let’s make this rigorous by defining the semantics of the language in terms
of pre-conditions and post-conditions!
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Partial Correctness

Here’s the IMP syntax:

a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

b ∈ Bexp b ::= true | false | a1 < a2

c ∈ Com c ::= skip | x := a | c1; c2

| if b then c1 else c2 | while b do c

A partial correctness statement is a triple:
{P} c {Q}

Meaning: If P holds, and then c executes (and terminates), then Q holds
afterward.
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Partial Correctness

{x = 21} y := x × 2 {y = 42}

{x = n} y := x × 2 {y = 2n}
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Question

Given the following partial correctness specification,

{P} while x < 0 do x := x + 1 {x ≥ 0}

which P makes it valid?

A. true
B. false
C. x ≥ 0
D. All of the above.
E. None of the above.
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Question

Given the following partial correctness specification,

{P} while x < 0 do x := x + 1 {false}

which P makes it valid?

A. true
B. false
C. x ≥ 0
D. All of the above.
E. None of the above.
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Total Correctness

Note that partial correctness specifications don’t ensure that the program will
terminate—this is why they are called “partial.”

Sometimes we need to know that the program will terminate.

A total correctness statement is a triple written with square brackets:

[ P ] c [ Q ]

Meaning: if P holds, then c will terminate and Q holds after c.

We’ll focus mostly on partial correctness.
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Example: Partial Correctness

{foo = 0 ∧ bar = i}
baz := 0;
while foo ̸= bar
do

baz := baz− 2;
foo := foo+ 1

{baz = −2× i}

Intuition: if we start with a store σ that maps foo to 0 and bar to an integer i,
and if the execution of the command terminates, then the final store σ′ will map
baz to −2i.
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Example: Total Correctness

[foo = 0 ∧ bar = i ∧ i ≥ 0]
baz := 0;
while foo ̸= bar
do

baz := baz− 2;
foo := foo+ 1

[baz = −2× i]

Intuition: if we start with a store σ that maps foo to 0 and bar to a non-negative
integer i, then the execution of the command will terminate in a final store σ′ will
map baz to −2i.
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Another Example

{foo = 0 ∧ bar = i}
baz := 0;
while baz ̸= bar
do

baz := baz+ foo;
foo := foo+ 1

{baz = i}

Is this partial correctness statement valid?
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Assertions

We define a new language syntax to write assertions:

i ∈ LVar

a ∈ Aexp ::= x | i | n | a1 + a2 | a1 × a2

P,Q ∈ Assn ::= true | false
| a1 < a2

| P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2

| ¬P | ∀i. P | ∃i. P
Assertions can introduce logical variables, which are different from program
variables.
Note that every boolean expression b is also an assertion. 14



Satisfaction

Next we’ll define what it means for a store σ to satisfy an assertion.

To do this, we need an interpretation for the logical variables, which is like the
store for program variables:

I : LVar → Int

And a denotation function for assertion arithmetic expressions, Ai[[a]], that’s
almost the same as for ordinary arithmetic:

Ai[[n]](σ, I) = n
Ai[[x]](σ, I) = σ(x)
Ai[[i]](σ, I) = I(i)

Ai[[a1 + a2]](σ, I) = Ai[[a1]](σ, I) +Ai[[a2]](σ, I)
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Satisfaction

Next we define the satisfaction relation for assertions, ⊨I:

Definition (Assertation satisfaction)
σ ⊨I true (always)
σ ⊨I a1 < a2 if Ai[[a1]](σ, I) < Ai[[a2]](σ, I)
σ ⊨I P1 ∧ P2 if σ ⊨I P1 and σ ⊨I P2

σ ⊨I P1 ∨ P2 if σ ⊨I P1 or σ ⊨I P2

σ ⊨I P1 ⇒ P2 if σ ̸⊨I P1 or σ ⊨I P2

σ ⊨I ¬P if σ ̸⊨I P
σ ⊨I ∀i. P if ∀k ∈ Int. σ ⊨I[i7→k] P
σ ⊨I ∃i. P if ∃k ∈ Int. σ ⊨I[i7→k] P
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Satisfaction

Next we define what it means for a command c to satisfy a partial correctness
statement.

Definition (Partial correctness statement satisfiability)
A partial correctness statement {P} c {Q} is satisfied in store σ and
interpretation I, written σ ⊨I {P} c {Q}, if:

∀σ′. if σ ⊨I P and C[[c]]σ = σ′ then σ′ ⊨I Q
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Validity

Definition (Assertion validity)
An assertion P is valid (written ⊨ P) if it is valid in any store, under any
interpretation: ∀σ, I. σ ⊨I P

Definition (Partial correctness statement validity)
A partial correctness triple is valid (written ⊨ {P} c {Q}), if it is valid in any
store and interpretation: ∀σ, I. σ ⊨I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial
correctness statement {P} c {Q} is valid.”
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Proving Specifications

How do we show that {P} c {Q} holds?

We know that {P} c {Q} is valid if it holds for all stores and interpretations:
∀σ, I. σ ⊨I {P} c {Q}.

Showing that σ ⊨I {P} c {Q} requires reasoning about the denotation of c
(because of the definition of satisfaction).

We can do this manually, but there is a better way!

We can use a set of inference rules and axioms, called Hoare rules, to directly
derive valid partial correctness statements without having to reason about stores,
interpretations, and the execution of c.
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