

CS 4110
Programming Languages & Logics

Lecture 12
Axiomatic Semantics

Kinds of Semantics

Operational Semantics
• Describes how programs compute
• Relatively easy to define
• Close connection to implementations

Denotational Semantics
• Describes what programs compute
• Solid mathematical foundation
• Simplifies equational reasoning
Axiomatic Semantics
• Describes the properties programs satisfy
• Useful for reasoning about correctness

2

Kinds of Semantics

Operational Semantics
• Describes how programs compute
• Relatively easy to define
• Close connection to implementations
Denotational Semantics
• Describes what programs compute
• Solid mathematical foundation
• Simplifies equational reasoning

Axiomatic Semantics
• Describes the properties programs satisfy
• Useful for reasoning about correctness

2

Kinds of Semantics

Operational Semantics
• Describes how programs compute
• Relatively easy to define
• Close connection to implementations
Denotational Semantics
• Describes what programs compute
• Solid mathematical foundation
• Simplifies equational reasoning
Axiomatic Semantics
• Describes the properties programs satisfy
• Useful for reasoning about correctness

2

Axiomatic Semantics

To define an axiomatic semantics we need:
• A language for expressing program properties
• Proof rules for establishing the validity of properties with respect to programs

Assertions:
• The value of x is greater than 0
• The value of y is even
• The value of z is prime
Assertion Languages:
• First-order logic: ∀, ∃,∧,∨, x = y,R(x), . . .
• Temporal or modal logic: □, ⋄,X,U, F, ...
• Special-purpose logics: Alloy, Sugar, Z3, etc.

3

Axiomatic Semantics

To define an axiomatic semantics we need:
• A language for expressing program properties
• Proof rules for establishing the validity of properties with respect to programs
Assertions:
• The value of x is greater than 0
• The value of y is even
• The value of z is prime

Assertion Languages:
• First-order logic: ∀, ∃,∧,∨, x = y,R(x), . . .
• Temporal or modal logic: □, ⋄,X,U, F, ...
• Special-purpose logics: Alloy, Sugar, Z3, etc.

3

Axiomatic Semantics

To define an axiomatic semantics we need:
• A language for expressing program properties
• Proof rules for establishing the validity of properties with respect to programs
Assertions:
• The value of x is greater than 0
• The value of y is even
• The value of z is prime
Assertion Languages:
• First-order logic: ∀, ∃,∧,∨, x = y,R(x), . . .
• Temporal or modal logic: □, ⋄,X,U, F, ...
• Special-purpose logics: Alloy, Sugar, Z3, etc.

3

Applications

• Proving correctness
• Documentation
• Test generation
• Symbolic execution
• Translation validation
• Bug finding
• Malware detection

4

Pre-Conditions and Post-conditions

Assertions are often used (informally) in code

/* Precondition: 0 <= i < A.length */
/* Postcondition: returns A[i] */
public int get(int i) {

return A[i];
}

These assertions are useful as documentation or run-time checks, but there is no
guarantee they are correct.
Idea: Let’s make this rigorous by defining the semantics of the language in terms
of pre-conditions and post-conditions!

5

Partial Correctness

Here’s the IMP syntax:

a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

b ∈ Bexp b ::= true | false | a1 < a2

c ∈ Com c ::= skip | x := a | c1; c2

| if b then c1 else c2 | while b do c

A partial correctness statement is a triple:
{P} c {Q}

Meaning: If P holds, and then c executes (and terminates), then Q holds
afterward.

6

Partial Correctness

{x = 21} y := x × 2 {y = 42}

{x = n} y := x × 2 {y = 2n}

7

Partial Correctness

{x = 21} y := x × 2 {y = 42}

{x = n} y := x × 2 {y = 2n}

7

Question

Given the following partial correctness specification,

{P} while x < 0 do x := x + 1 {x ≥ 0}

which P makes it valid?

A. true
B. false
C. x ≥ 0
D. All of the above.
E. None of the above.

8

Question

Given the following partial correctness specification,

{P} while x < 0 do x := x + 1 {false}

which P makes it valid?

A. true
B. false
C. x ≥ 0
D. All of the above.
E. None of the above.

9

Total Correctness

Note that partial correctness specifications don’t ensure that the program will
terminate—this is why they are called “partial.”

Sometimes we need to know that the program will terminate.

A total correctness statement is a triple written with square brackets:

[P] c [Q]

Meaning: if P holds, then c will terminate and Q holds after c.

We’ll focus mostly on partial correctness.

10

Example: Partial Correctness

{foo = 0 ∧ bar = i}
baz := 0;
while foo ̸= bar
do

baz := baz− 2;
foo := foo+ 1

{baz = −2× i}

Intuition: if we start with a store σ that maps foo to 0 and bar to an integer i,
and if the execution of the command terminates, then the final store σ′ will map
baz to −2i.

11

Example: Total Correctness

[foo = 0 ∧ bar = i ∧ i ≥ 0]
baz := 0;
while foo ̸= bar
do

baz := baz− 2;
foo := foo+ 1

[baz = −2× i]

Intuition: if we start with a store σ that maps foo to 0 and bar to a non-negative
integer i, then the execution of the command will terminate in a final store σ′ will
map baz to −2i.

12

Another Example

{foo = 0 ∧ bar = i}
baz := 0;
while baz ̸= bar
do

baz := baz+ foo;
foo := foo+ 1

{baz = i}

Is this partial correctness statement valid?

13

Assertions

We define a new language syntax to write assertions:

i ∈ LVar

a ∈ Aexp ::= x | i | n | a1 + a2 | a1 × a2

P,Q ∈ Assn ::= true | false
| a1 < a2

| P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2

| ¬P | ∀i. P | ∃i. P
Assertions can introduce logical variables, which are different from program
variables.
Note that every boolean expression b is also an assertion. 14

Satisfaction

Next we’ll define what it means for a store σ to satisfy an assertion.

To do this, we need an interpretation for the logical variables, which is like the
store for program variables:

I : LVar → Int

And a denotation function for assertion arithmetic expressions, Ai[[a]], that’s
almost the same as for ordinary arithmetic:

Ai[[n]](σ, I) = n
Ai[[x]](σ, I) = σ(x)
Ai[[i]](σ, I) = I(i)

Ai[[a1 + a2]](σ, I) = Ai[[a1]](σ, I) +Ai[[a2]](σ, I)

15

Satisfaction

Next we’ll define what it means for a store σ to satisfy an assertion.

To do this, we need an interpretation for the logical variables, which is like the
store for program variables:

I : LVar → Int
And a denotation function for assertion arithmetic expressions, Ai[[a]], that’s
almost the same as for ordinary arithmetic:

Ai[[n]](σ, I) = n
Ai[[x]](σ, I) = σ(x)
Ai[[i]](σ, I) = I(i)

Ai[[a1 + a2]](σ, I) = Ai[[a1]](σ, I) +Ai[[a2]](σ, I)
15

Satisfaction

Next we define the satisfaction relation for assertions, ⊨I:

Definition (Assertation satisfaction)
σ ⊨I true (always)
σ ⊨I a1 < a2 if Ai[[a1]](σ, I) < Ai[[a2]](σ, I)
σ ⊨I P1 ∧ P2 if σ ⊨I P1 and σ ⊨I P2

σ ⊨I P1 ∨ P2 if σ ⊨I P1 or σ ⊨I P2

σ ⊨I P1 ⇒ P2 if σ ̸⊨I P1 or σ ⊨I P2

σ ⊨I ¬P if σ ̸⊨I P
σ ⊨I ∀i. P if ∀k ∈ Int. σ ⊨I[i7→k] P
σ ⊨I ∃i. P if ∃k ∈ Int. σ ⊨I[i7→k] P

16

Satisfaction

Next we define what it means for a command c to satisfy a partial correctness
statement.

Definition (Partial correctness statement satisfiability)
A partial correctness statement {P} c {Q} is satisfied in store σ and
interpretation I, written σ ⊨I {P} c {Q}, if:

∀σ′. if σ ⊨I P and C[[c]]σ = σ′ then σ′ ⊨I Q

17

Validity

Definition (Assertion validity)
An assertion P is valid (written ⊨ P) if it is valid in any store, under any
interpretation: ∀σ, I. σ ⊨I P

Definition (Partial correctness statement validity)
A partial correctness triple is valid (written ⊨ {P} c {Q}), if it is valid in any
store and interpretation: ∀σ, I. σ ⊨I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial
correctness statement {P} c {Q} is valid.”

18

Proving Specifications

How do we show that {P} c {Q} holds?

We know that {P} c {Q} is valid if it holds for all stores and interpretations:
∀σ, I. σ ⊨I {P} c {Q}.

Showing that σ ⊨I {P} c {Q} requires reasoning about the denotation of c
(because of the definition of satisfaction).

We can do this manually, but there is a better way!

We can use a set of inference rules and axioms, called Hoare rules, to directly
derive valid partial correctness statements without having to reason about stores,
interpretations, and the execution of c.

19

Proving Specifications

How do we show that {P} c {Q} holds?

We know that {P} c {Q} is valid if it holds for all stores and interpretations:
∀σ, I. σ ⊨I {P} c {Q}.

Showing that σ ⊨I {P} c {Q} requires reasoning about the denotation of c
(because of the definition of satisfaction).

We can do this manually, but there is a better way!

We can use a set of inference rules and axioms, called Hoare rules, to directly
derive valid partial correctness statements without having to reason about stores,
interpretations, and the execution of c.

19

