
 

CS 4110

Programming Languages & Logics

Lecture 7
IMP Properties



Command Equivalence

Intuitively, two commands are equivalent if they produce the same result under
any store...

Definition (Equivalence of commands)
Two commands c and c′ are equivalent (written c ∼ c′) if, for any stores σ and σ′,
we have

〈σ, c〉 ⇓ σ′ ⇐⇒ 〈σ, c′〉 ⇓ σ′.

2



Command Equivalence

For example, we can prove that everywhile command is equivalent to its
“unrolling”:

Theorem
For all b ∈ Bexp and c ∈ Com,

while b do c ∼ if b then (c;while b do c) else skip

Proof.
We show each implication separately...

3



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite state... but IMP

has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite state... but IMP

has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?

• A: Not quite... we also need to check the language is not finite state... but IMP
has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite state... but IMP

has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite state... but IMP

has real mathematical integers.

• Q: What if we replace Intwith Int64?

• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite state... but IMP

has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite state... but IMP

has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite state... but IMP

has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations during execution
of an IMP program?

• A: Can calculate a fixed bound!

4



Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if 〈σ, c〉 ⇓ σ′ and 〈σ, c〉 ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of 〈σ, c〉 ⇓ σ′...

5



Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if 〈σ, c〉 ⇓ σ′ and 〈σ, c〉 ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of 〈σ, c〉 ⇓ σ′...

5



Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if 〈σ, c〉 ⇓ σ′ and 〈σ, c〉 ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of 〈σ, c〉 ⇓ σ′...

5



Derivations

WriteD ⊩ y if the conclusion of derivationD is y.
(Read as “D proves y.”)

Example:

Given the derivation,

〈σ, 6〉 ⇓ 6 〈σ, 7〉 ⇓ 7
〈σ, 6× 7〉 ⇓ 42

〈σ, i := 6× 7〉 ⇓ σ[i 7→ 42]

we would write: D ⊩ 〈σ, i := 6× 7〉 ⇓ σ[i 7→ 42]

6



Derivations

WriteD ⊩ y if the conclusion of derivationD is y.
(Read as “D proves y.”)

Example:

Given the derivation,

〈σ, 6〉 ⇓ 6 〈σ, 7〉 ⇓ 7
〈σ, 6× 7〉 ⇓ 42

〈σ, i := 6× 7〉 ⇓ σ[i 7→ 42]

we would write: D ⊩ 〈σ, i := 6× 7〉 ⇓ σ[i 7→ 42]
6



Induction on Derivations

Remember that every “true” fact given by an inductive definition must have a
derivation that “proves” that fact.

For many inductive proofs, it’s useful to visualize the derivation tree for each
fact.

In each case in an inductive proof, we assume that the property P holds for the
rule’s premises and prove it for the rule’s conclusion.

Those premises each also have derivations.

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ zwhere z is one of the
premises used of the final rule of derivationD.

7



Induction on Derivations

Remember that every “true” fact given by an inductive definition must have a
derivation that “proves” that fact.

For many inductive proofs, it’s useful to visualize the derivation tree for each
fact.

In each case in an inductive proof, we assume that the property P holds for the
rule’s premises and prove it for the rule’s conclusion.

Those premises each also have derivations.

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ zwhere z is one of the
premises used of the final rule of derivationD.

7



Large-Step Semantics

SKIP
〈σ, skip〉 ⇓ σ

ASSGN
〈σ, a〉 ⇓ n

〈σ, x := a〉 ⇓ σ[x 7→ n]

SEQ
〈σ, c1〉 ⇓ σ′ 〈σ′, c2〉 ⇓ σ′′

〈σ, c1; c2〉 ⇓ σ′′

IF-T
〈σ, b〉 ⇓ true 〈σ, c1〉 ⇓ σ′

〈σ, if b then c1 else c2〉 ⇓ σ′

IF-F
〈σ, b〉 ⇓ false 〈σ, c2〉 ⇓ σ′

〈σ, if b then c1 else c2〉 ⇓ σ′

WHILE-T
〈σ, b〉 ⇓ true 〈σ, c〉 ⇓ σ′ 〈σ′,while b do c〉 ⇓ σ′′

〈σ,while b do c〉 ⇓ σ′′

WHILE-F
〈σ, b〉 ⇓ false

〈σ,while b do c〉 ⇓ σ
8


