CS 4110

Programming Languages & Logics

Lecture 2
Introduction to Semantics

Semantics

Question: What is the meaning of a program?

Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a compiler, or we
could consult a manual...

@ [fabian — -zsh — 37x9 AB.T Void
cc -0 hello hello.c The dnonexistent) value of a void object may not be used in any way, and neither
he explicit nor implicit conversion to any non-void type may be applied. Because a void
Hello World expression denotes a nonexistent value, such an expression may be used only where the

value is not required, for example as an expression statement (§A9.2) or as the left
operand of a comma operator (FA7.18).
An expression may be converted to type void by a cast. For example, a void cast
documents the discarding of the value of a function call used as an cxpression statement.
void did not appear in the first edition of this book, but has become common
since.

...but none of these is a satisfactory solution.

Formal Semantics

Three Approaches
e Operational

» Model program by execution on abstract machine
» Useful forimplementing compilers and interpreters

e Denotational:

» Model program as mathematical objects
> Useful for theoretical foundations

e Axiomatic

» Model program by the logical formulas it obeys
> Useful for proving program correctness

(0,€) — (o', €)

[e]

F{ote{v}

Arithmetic Expressions

Syntax

A language of integer arithmetic expressions with assignment.

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
xX,y,z & \Var

nm < Int
e € Exp

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
xX,y,z & \Var

nm < Int
e € Exp

BNF Grammar:

Ambiguity

What expression does the string “1 +2 * 3” describe?

Ambiguity

What expression does the string “1 +2 * 3” describe?
There are two possible parse trees:

1/\ /N
/N /N
2 3 1 2

3

Ambiguity

What expression does the string “1 +2 * 3” describe?
There are two possible parse trees:

1/\ /\3
/N /N
2 3 1 2

In this course, we will distinguish abstract syntax from concrete syntax, and
focus primarily on abstract syntax (using conventions or parentheses at the
concrete level to disambiguate as needed).

Representing Expressions

BNF Grammar:
e =X

|el+ez
|e1* e,
|x:=e;; €

Representing Expressions

BNF Grammar:
e =x
|n
| e, +te)
| e xe;
|x:=e;; €

OCaml:

type exp = Var of string
| Intofint
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

Example: Mul(Int 2, Add(Var "foo", Int 1))

Representing Expressions

BNF Grammar:
e =x
|n
| e, +te)
| e xe;
|x:=e;; €

Java:

abstract class Expr {}

class Var extends Expr { String name; ... }
class Int extends Expr {intval; ... }

class Add extends Expr { Expr expl, exp2; ... }
class Mul extends Expr { Expr expl, exp2; ... }
class Assgn extends Expr { String var, Expr expl, exp2; ...

Quiz

® 7+(4%*2)evaluatesto...?

Quiz

e 7+(4%2)evaluatesto 15

Quiz

e 7+(4%2)evaluatesto 15
e j:=6+1;2*x3x*jevaluatesto...?

Quiz

e 7+(4%2)evaluatesto 15
e j:=6+1; 2x%3x*jevaluatesto 42

Quiz

e 7+(4%2)evaluatesto 15
e j:=6+1; 2x%3x*jevaluatesto 42
e x+1evaluatesto...?

Quiz

e 7+(4%2)evaluatesto 15
e j:=6+1; 2x%3x*jevaluatesto 42
e x+1 evaluatesto error?

Quiz

e 7+(4%2)evaluatesto 15
e j:=6+1; 2*3x*jevaluatesto 42
e x+1 evaluatesto error?

The rest of this lecture will make these intuitions precise...

Mathematical Preliminaries

Binary Relations

The product of two sets A and B, written A x B, contains all ordered pairs (a, b)
witha € Aand b € B.

10

Binary Relations

The product of two sets A and B, written A x B, contains all ordered pairs (a, b)
witha € Aand b € B.

A binary relation on Aand B is just a subset R C A x B.

10

Binary Relations

The product of two sets A and B, written A x B, contains all ordered pairs (a, b)
witha € Aand b € B.

A binary relation on Aand B is just a subset R C A x B.

Given a binary relation R C A x B, the setA s called the domain of R and B is
called the range (or codomain) of R.

Binary Relations

The product of two sets A and B, written A x B, contains all ordered pairs (a, b)
witha € Aand b € B.

A binary relation on Aand B is just a subset R C A x B.

Given a binary relation R C A x B, the setA s called the domain of R and B is
called the range (or codomain) of R.

Some Important Relations

e empty:)

e total: Ax B

e identityon A: {(a,a) | a € A}.

e compositionR; S: {(a,c)|3b.(a,b) € RA(b,c) € S}

Functions

A (total) function fis a binary relation f C A x B with the property that every
a € Aisrelated to exactlyone b € B.

11

Functions

A (total) function fis a binary relation f C A x B with the property that every
a € Aisrelated to exactlyone b € B.

When fis a function, we usually write f : A — Binstead of f C A x B.

11

Functions

A (total) function fis a binary relation f C A x B with the property that every
a € Aisrelated to exactlyone b € B.

When fis a function, we usually write f : A — Binstead of f C A x B.

The image of fis the set of elements b € B that are mapped to by at least one
a € A. Formally:

image(f) = {f(a)|a € A}

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of fand g is
defined by: (g o f)(x) = g(f(x)) Note order!

12

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of fand g is
defined by: (g o f)(x) = g(f(x)) Note order!

A partial function f: A — Biis a total functionf: A” — BonasetA’ C A. The
notation dom(f) refers to A'.

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of fand g is
defined by: (g o f)(x) = g(f(x)) Note order!

A partial function f: A — Biis a total functionf: A” — BonasetA’ C A. The
notation dom(f) refers to A'.

Afunctionf: A — Bis said to be injective (or one-to-one) if and only if a; # a,
implies f(a;) # f(a,).

Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of fand g is
defined by: (g o f)(x) = g(f(x)) Note order!

A partial function f: A — Biis a total functionf: A” — BonasetA’ C A. The
notation dom(f) refers to A'.

Afunctionf: A — Bis said to be injective (or one-to-one) if and only if a; # a,
implies f(a;) # f(a,).

Afunction f: A — Bis said to be surjective (or onto) if and only if the image of fis
B.

Operational Semantics

Overview

An operational semantics describes how a program executes on some abstract
(imaginary) machine.

14

Overview

An operational semantics describes how a program executes on some abstract
(imaginary) machine.

A small-step operational semantics describes how such an execution proceeds
from configuration to configuration: (o, e) — (o, €’)

14

Overview

An operational semantics describes how a program executes on some abstract
(imaginary) machine.

A small-step operational semantics describes how such an execution proceeds
from configuration to configuration: (o, e) — (o, €’)
For our language, a configuration (o, e) is a pair of:

e astore o that records the values of variables,

e and the expression e being evaluated.

Overview

An operational semantics describes how a program executes on some abstract
(imaginary) machine.

A small-step operational semantics describes how such an execution proceeds
from configuration to configuration: (o, e) — (o, €’)
For our language, a configuration (o, e) is a pair of:
e astore o that records the values of variables,
e and the expression e being evaluated.
More formally:

Var — Int
Store x Exp

Store
Config

> >

(A store is a partial function from variables to integers.)

Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e.,
a subset of Config x Config.

Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e.,
a subset of Config x Config.

Notation: (o,e) — (o', €)
which means ({0, e), (o', €)) € “=".

Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e.,
a subset of Config x Config.

Notation: (o,e) — (o', €)
which means ({0, e), (¢/,€')) € “=".

Question: How should we define this relation?

Operational Semantics

The small-step operational semantics itself is a relation on configurations—i.e.,
a subset of Config x Config.

Notation: (o,e) — (o', €)
which means ({0, e), (¢/,€')) € “=".

Question: How should we define this relation? Remember that there are an
infinite number of configurations and possible steps!

Inference Rules

Answer: Define it inductively, using inference rules:

premise, premise,

conclusion

NAME

16

Inference Rules

Answer: Define it inductively, using inference rules:

premise, premise,
NAME

conclusion

An inference rule defines an implication: if all the premises hold, then the
conclusion also holds.

Formally, “—” is the smallest relation that is closed under all the inference rules.

16

Variables

n = o(x)

(o,x) — (o, n)

VAR

17

Addition

p=m+n

(o.n+m) — (0,p)

ADD

18

Addition

p=m+n

A
(on+my = (o.p) "

() > (el

(o,e1+€) — (o, €] +e;)

18

Addition

p=m+n

A
(on+my = (o.p) "

<Ua el> - <0J7 eg.) LADD

(0,e1%€) = (0,61 +€))

(0,6,) — (o', €))

RADD
<O', n+ eZ> - <OJ7 n +e/2>

18

Multiplication

p=mxn

{o,m*n) — (o,p)

MuL

19

Multiplication

p=mxn y
U
(o.m*n) = (0.p)
o,e.) — (0, €]
(re) (e

(0,e1%€2) = (o', €] x &)

(0,6,) — (', €))

RMuL
<U7 nx e2> — <OJ? nx eIZ>

19

Assignment

o' =ox—n]
ASSGN

(o,x:=n; €)) — (d',e,)

Notation: o[x — n] is a new (partial) function that mostly behaves like o, except
that it maps x to n.

20

Assignment

o' =ox—n]

ASSGN
(o,x:=n; €)) — (d',e,)

Notation: o[x — n] is a new (partial) function that mostly behaves like o, except
that it maps x to n.

e;) — (0 €
o,€1) = (0", €1) ASSGN1

(o,x:=e1; &) = (o', x:=€; &)

20

Operational Semantics

_ AN AN
n= U(X) VAR <Uv el> — <Gl7e/1> LADD <07 e2> — <O-I7e2> . RADD
(o,%) = (o, n) (o,e1+€) — (0, €] +e7) (o,n+ey) = (o', n+e})
— / /
p=m+n ADD (o,€1) — <cr/,e/1> LMoL
(o,n+m) — (o,p) (o,€1%€2) — (0', €1 *%€3)
/ / —
<O’,€2>—><O’/,ez> . RMuUL p=mxn MUL
(o,n*ey) = (o', nxe}) (o,m*n) = {o,p)
e1) — (o, € "=ofx—n
(9, €1) <U,’ 1 —— ASSGNT o = olx], ASSGN
(o,x:=e1;) = (o, x:=€]; e) (o,x:=n; e3) = (0’ €)

21

Multi-Step Evaluation

We can define the multi-step evaluation relation, written —*, as the reflexive
and transitive closure of the small-step evaluation relation.

REFL TRANS
(o,€) =* (0,€) (o,€) =% (0" €")

22

What’s Next?

e Introductory Survey: Fill out on CMSX by tomorrow
e Foster Office Hours: Wednesday 2:30-3:30 (or by appointment)

e Homework 1: released tomorrow, due in a week

23

