
CS 4110 – Programming Languages and Logics
Lecture #32: Normalization

1 Introduction

A major limitation of the simply-typed lambda-calculus is that we can no longer write recursive
functions. Consider the nonterminating expression Ω = (𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥). What type does it
have? Let’s suppose that the type of 𝜆𝑥. 𝑥 𝑥 is 𝜏 → 𝜏′. But 𝜆𝑥. 𝑥 𝑥 is applied to itself! So that
means that the type of 𝜆𝑥. 𝑥 𝑥 is the argument type 𝜏. So we have that 𝜏 must be equal to 𝜏 → 𝜏′.
There is no such type for which this equality holds. (At least, not in this type system...)

This means that every well-typed program in the simply-typed lambda calculus terminates.
Formally:

Theorem (Normalization). If ⊢ 𝑒 :𝜏 then there exists a value 𝑣 such that 𝑒 →∗ 𝑣.

The rest of this lecture is devoted to proving this theorem.

2 Notation

We work with the simply-typed lambda calculus over unit,

𝑒 ::= 𝑥 | () | 𝜆𝑥 : 𝜏. 𝑒 | 𝑒1 𝑒2
𝑣 ::= () | 𝜆𝑥 : 𝜏. 𝑒
𝜏 ::= unit | 𝜏1 → 𝜏2

with the standard call-by value semantics:

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸

CONTEXT
𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′]

𝛽-REDUCTION (𝜆𝑥. 𝑒) 𝑣 → 𝑒{𝑣/𝑥}

3 A First Attempt

As a first attempt toward proving normalization, let us try a proof by structural induction on 𝑒. We
will need the following lemmas, all of which are standard. Each of these lemmas can be proved by
straightforward induction on the typing derivation. We leave these proofs as an exercise.

1

Lemma (Inversion).
• If Γ ⊢ 𝑥 :𝜏 then Γ(𝑥) = 𝜏

• If Γ ⊢ 𝜆𝑥 : 𝜏1. 𝑒 :𝜏 then 𝜏 = 𝜏1 → 𝜏2 and Γ, 𝑥 : 𝜏1 ⊢ 𝑒 :𝜏2.

• If Γ ⊢ 𝑒1 𝑒2 :𝜏 then Γ ⊢ 𝑒1 :𝜏′ → 𝜏 and Γ ⊢ 𝑒2 :𝜏′.
Lemma (Canonical Forms).

• If Γ ⊢ 𝑣 :unit then 𝑣 = ()
• If Γ ⊢ 𝑣 :𝜏1 → 𝜏2 then 𝑣 = 𝜆𝑥 :𝜏1.𝑒 and Γ, 𝑥 :𝜏1 ⊢ 𝑒 :𝜏2.
Now let us attempt to prove prove the main theorem.

Theorem (Normalization). If ⊢ 𝑒 :𝜏 then there exists a value 𝑣 such that 𝑒 →∗ 𝑣.
Proof. By structural induction on 𝑒.
Case 𝑒 = 𝑥:

By inversion, we have that the empty typing context maps 𝑥 to 𝜏, which is a contradiction.
Hence, the case vacuously holds.

Case 𝑒 = ():
Immediate since 𝑒 is already a value.

Case 𝑒 = 𝜆𝑥 : 𝜏.𝑒:
Immediate since 𝑒 is already a value.

Case 𝑒 = 𝑒1 𝑒2:
By inversion we have ⊢ 𝑒1 : 𝜏′ → 𝜏 and ⊢ 𝑒2 : 𝜏′. Hence, by induction hypothesis there exist
𝑣1 and 𝑣2 such that that 𝑒1 →∗ 𝑣1 and 𝑒2 →∗ 𝑣2. Moreover, by canonical forms we have that
𝑣1 = 𝜆𝑥 : 𝜏′.𝑒′. Hence, 𝑣1 𝑣2 → 𝑒′{𝑣2/𝑥}.
At this point we would like to apply the induction hypothesis to 𝑒′{𝑣2/𝑥} to show that it also
evaluates to a value, but doing thiswould not be valid—the induction hypothesis only applies
to immediate subexpressions of 𝑒! Moreover, we cannot get around this by using the other
induction principles we have seen before, such as induction on the size of the expression or
on the typing derivation—these induction hypotheses do not apply to 𝑒′{𝑣2/𝑥} either!
We need a different proof technique.

4 Logical Relations

Oneway to prove normalization for the simply-typed lambda calculus, which was invented by Tait
in 1967, is to use a logical relation. The idea in a logical relation is to define a predicate on expressions
indexed on types that captures the property we want. At base types this set will simply contain all
expressions satisfying the property. At function types, we additionally require that the property
be preserved whenever we apply the function to an argument of appropriate type that also has the
property.

Formally, we define the following predicate 𝑅𝜏(𝑒) inductively on 𝜏. We use 𝑒 halts as an abbre-
viation for exists 𝑣 such that 𝑒 →∗ 𝑣.

2

Definition (Logical Relation).

• 𝑅unit(𝑒) iff ⊢ 𝑒 :unit and 𝑒 halts.

• 𝑅𝜏1→𝜏2(𝑒) iff ⊢ 𝑒 :𝜏1 → 𝜏2 and 𝑒 halts, and for every 𝑒′ such that 𝑅𝜏1(𝑒′) we have 𝑅𝜏2(𝑒 𝑒′).
Normalization then follows from the following two lemmas:

Lemma. If ⊢ 𝑒 :𝜏 then 𝑅𝜏(𝑒)
Lemma. If 𝑅𝜏(𝑒) then 𝑒 halts.

The proof of the second is trivial, since halting is built into the definition of the logical relation.
To prove the first, we need the following additional lemma:

Lemma. If ⊢ 𝑒 :𝜏 and 𝑒 → 𝑒′ then 𝑅𝜏(𝑒) iff 𝑅𝜏(𝑒′).
We leave the proof of this lemma as an exercise.

Finally, the lemma above is proved as follows. We strengthen the induction hypothesis to allow
a non-empty typing context.

Lemma. If 𝑥1 : 𝜏1 . . . 𝑥𝑘 : 𝜏𝑘 ⊢ 𝑒 : 𝜏, and 𝑣1 to 𝑣𝑘 are values such that ⊢ 𝑣1 : 𝜏1 to ⊢ 𝑣𝑘 : 𝜏𝑘 and 𝑅𝜏1(𝑣1) to
𝑅𝜏𝑘 (𝑣𝑘), then 𝑅𝜏(𝑒{𝑣1/𝑥1} . . . {𝑣𝑘/𝑥𝑘}).
Proof. By structural induction on 𝑒.

• Case 𝑒 = 𝑥:
By inversion we have that 𝑥 = 𝑥𝑖 and 𝜏 = 𝜏𝑖 for some 𝑖. By definition, 𝑒{𝑣1/𝑥1} . . . {𝑣𝑘/𝑥𝑘} =
𝑣𝑖 . We have 𝑅𝜏𝑖 (𝑣𝑖) by assumption.

• Case 𝑒 = ():
By inversion we have that 𝜏 = unit. By definition, 𝑒{𝑣1/𝑥1} . . . {𝑣𝑘/𝑥𝑘} = (). We obtain
𝑅unit(()) by the definition of the logical relation as ⊢ () :unit and () halts.

• Case 𝑒 = 𝜆𝑥 :𝜏′. 𝑒′:
By inversion we have 𝜏 = 𝜏′ → 𝜏′′ and 𝑥1 : 𝜏1 . . . 𝑥𝑘 : 𝜏𝑘 , 𝑥 : 𝜏′ ⊢ 𝑒′ : 𝜏′′. We immediately have
that (𝜆𝑥 :𝜏′. 𝑒′){𝑣1/𝑥1} . . . {𝑣𝑘/𝑥𝑘} halts since it is already a value.
Let 𝑒′′ be an arbitrary expression such that 𝑅𝜏′(𝑒′′). By definition of the logical relation we
have ⊢ 𝑒′′ : 𝜏′ and 𝑒′′ halts. So there exists a 𝑣′′ such that 𝑒′′ →∗ 𝑣′′. We have a lemma
above stating that evaluation preserves membership in our logical relation; by this lemma,
we have that 𝑅𝜏′(𝑣′′). By the induction hypothesis applied to 𝑒′, which is a subexpression of
the current expression 𝑒, we have 𝑅𝜏′′(𝑒′{𝑣1/𝑥1} . . . {𝑣𝑘/𝑥𝑘}{𝑣′′/𝑥}).
Hence, by the definition of the operational semantics and the aforementioned lemma again
we also have 𝑅𝜏′′(𝑒{𝑣1/𝑥1} . . . {𝑣𝑘/𝑥𝑘}) 𝑒′′). Therefore by the definition of the logical relation
we have 𝑅𝜏′→𝜏′′(𝑒{𝑣1/𝑥1} . . . {𝑣𝑘/𝑥𝑘}) as required.

• Case 𝑒 = 𝑒1 𝑒2: Left as an exercise.

3

	Introduction
	Notation
	A First Attempt
	Logical Relations

