
CS 4110 – Programming Languages and Logics
Lectures #26: Advanced Types

1 Overview

In this lecture we will extend the simply-typed 𝜆-calculus with several features we saw earlier in
the course, including products, sums, and references, as well as one new one.

1.1 Products

We have previously seen how to encode products into untyped 𝜆-calculus.

𝑒 ::= · · · | (𝑒1 , 𝑒2) | #1 𝑒 | #2 𝑒

𝑣 ::= · · · | (𝑣1 , 𝑣2)

We defined congruence rules that determine the order of evaluation, using the following evalua-
tion contexts.

𝐸 ::= · · · | (𝐸, 𝑒) | (𝑣, 𝐸) | #1 𝐸 | #2 𝐸

We also defined two computation rules that determin how the pairing constructor and destructors
interact.

#1 (𝑣1 , 𝑣2) → 𝑣1 #2 (𝑣1 , 𝑣2) → 𝑣2

In simply-typed 𝜆-calculus, the type of a product expression (or a product type) is a pair of types,
written 𝜏1 × 𝜏2. The typing rules for the product constructors and destructors are as follows:

Γ ⊢ 𝑒1 :𝜏1 Γ ⊢ 𝑒2 :𝜏2

Γ ⊢ (𝑒1 , 𝑒2) :𝜏1 × 𝜏2

Γ ⊢ 𝑒 :𝜏1 × 𝜏2

Γ ⊢ #1 𝑒 :𝜏1

Γ ⊢ 𝑒 :𝜏1 × 𝜏2

Γ ⊢ #2 𝑒 :𝜏2

Note the similarities between these rules and the proof rules for conjunction in natural deduction.
We will examine this relationship closely later in the course.

1.2 Sums

The next example, sums, are dual to products. Intuitively, a product holds two values, one of type
𝜏1, and one of type 𝜏2, while a sum holds a single value that is either of type 𝜏1 or of type 𝜏2. The
type of a sum is written 𝜏1 + 𝜏2. There are two constructors for sums, corresponding to whether
we are constructing a sum with a value of 𝜏1 or a value of 𝜏2.

𝑒 ::= · · · | inl𝜏1+𝜏2 𝑒 | inr𝜏1+𝜏2 𝑒 | case 𝑒1 of 𝑒2 | 𝑒3

𝑣 ::= · · · | inl𝜏1+𝜏2 𝑣 | inr𝜏1+𝜏2 𝑣

1

There are congruence rules that determine the order of evaluation, as defined by the following
evaluation contexts.

𝐸 ::= · · · | inl𝜏1+𝜏2 𝐸 | inr𝜏1+𝜏2 𝐸 | case 𝐸 of 𝑒2 | 𝑒3

There are also two computation rules that that show how the constructors and destructors interact.

case inl𝜏1+𝜏2 𝑣 of 𝑒2 | 𝑒3 → 𝑒2 𝑣 case inr𝜏1+𝜏2 𝑣 of 𝑒2 | 𝑒3 → 𝑒3 𝑣

The type of a sum expression (or a sum type) is written 𝜏1 + 𝜏2. The typing rules for the sum
constructors and destructor are the following.

Γ ⊢ 𝑒 :𝜏1

Γ ⊢ inl𝜏1+𝜏2 𝑒 :𝜏1 + 𝜏2

Γ ⊢ 𝑒 :𝜏2

Γ ⊢ inr𝜏1+𝜏2 𝑒 :𝜏1 + 𝜏2

Γ ⊢ 𝑒 :𝜏1 + 𝜏2 Γ ⊢ 𝑒1 :𝜏1 → 𝜏 Γ ⊢ 𝑒2 :𝜏2 → 𝜏

Γ ⊢ case 𝑒 of 𝑒1 | 𝑒2 :𝜏

Let’s see an example of a program that uses sum types.

let 𝑓 = 𝜆𝑎 : int + (int → int). case 𝑎 of (𝜆𝑦. 𝑦 + 1) | (𝜆𝑔. 𝑔 35) in
let ℎ = 𝜆𝑥 : int. 𝑥 + 7 in
𝑓 (inrint+(int→int) ℎ)

The function 𝑓 takes argument 𝑎, which is a sum—that is, the actual argument for 𝑎 will either be
a value of type int or a value of type int → int. We destruct the sum value with a case statement,
which must be prepared to take either of the two kinds of values that the sum may contain. In this
instance, we end up applying 𝑓 to a value of type int → int (i.e., a value injected into the right type
of the sum), so the entire program ends up evaluating to 42.

1.3 References

Next we consider mutable references. Recall the syntax and semantics for references.

𝑒 ::= · · · | ref 𝑒 | !𝑒 | 𝑒1 := 𝑒2 | ℓ
𝑣 ::= · · · | ℓ
𝐸 ::= · · · | ref 𝐸 | !𝐸 | 𝐸 := 𝑒 | 𝑣 := 𝐸

ALLOC ⟨𝜎, ref 𝑣⟩ → ⟨𝜎[ℓ ↦→ 𝑣], ℓ⟩ ℓ ∉ dom(𝜎) DEREF ⟨𝜎, !ℓ⟩ → ⟨𝜎, 𝑣⟩ 𝜎(ℓ) = 𝑣

ASSIGN ⟨𝜎, ℓ := 𝑣⟩ → ⟨𝜎[ℓ ↦→ 𝑣], 𝑣⟩
To extend the type system, we add a new type, 𝜏 ref, to stand for the type of a location that contains
a value of type 𝜏. For example the expression ref 7 has type int ref, since it evaluates to a location
that contains a value of type int. Dereferencing a location of type 𝜏 ref results in a value of type 𝜏,
so !𝑒 has type 𝜏 if 𝑒 has type 𝜏 ref. And for assignment 𝑒1 := 𝑒2, if 𝑒1 has type 𝜏 ref, then 𝑒2 must
have type 𝜏.

𝜏 ::= · · · | 𝜏 ref

2

Γ ⊢ 𝑒 :𝜏
Γ ⊢ ref 𝑒 :𝜏 ref

Γ ⊢ 𝑒 :𝜏 ref
Γ ⊢ !𝑒 :𝜏

Γ ⊢ 𝑒1 :𝜏 ref Γ ⊢ 𝑒2 :𝜏
Γ ⊢ 𝑒1 := 𝑒2 :𝜏

Note that there is no typing rule for location values. What should the type of a location value ℓ
be? Clearly, it should be of type 𝜏 ref, where 𝜏 is the type of the value contained in location ℓ . But
how do we know what value is contained in location ℓ? We could directly examine the store, but
this would not be inefficient. In addition, examining the store directly may not give us a conclusive
answer! Consider, for example, a store 𝜎 and location ℓ where 𝜎(ℓ) = ℓ ; what is the type of ℓ?

Instead, we introduce store typings to track the types of values stored in locations. Store typings
are partial functions from locations to types. We use metavariable Σ to range over store typings.
Our typing relation now becomes a relation over 4 entities: typing contexts, store typings, expres-
sions, and types. We write Γ,Σ ⊢ 𝑒 : 𝜏 when expression 𝑒 has type 𝜏 under typing context Γ and
store typing Σ.

Our new typing rules for references are as follows. (Typing rules for other constructs are mod-
ified to take a store typing in the obvious way.)

Γ,Σ ⊢ 𝑒 :𝜏
Γ,Σ ⊢ ref 𝑒 :𝜏 ref

Γ,Σ ⊢ 𝑒 :𝜏 ref
Γ,Σ ⊢ !𝑒 :𝜏

Γ,Σ ⊢ 𝑒1 :𝜏 ref Γ,Σ ⊢ 𝑒2 :𝜏
Γ,Σ ⊢ 𝑒1 := 𝑒2 :𝜏

Σ(ℓ) = 𝜏

Γ,Σ ⊢ ℓ :𝜏 ref

So, how do we state type soundness? Our type soundness theorem for simply-typed lambda cal-
culus said that if Γ ⊢ 𝑒 : 𝜏 and 𝑒 →∗ 𝑒′ then 𝑒′ is not stuck. But our operational semantics for
references now has a store, and our typing judgment now has a store typing in addition to a typ-
ing context. We need to adapt the definition of type soundness appropriately. To do so, we define
what it means for a store to be well-typed with respect to a typing context.

Definition. Store 𝜎 is well-typed with respect to typing context Γ and store typingΣ, written Γ,Σ ⊢ 𝜎
, if dom(𝜎) = dom(Σ) and for all ℓ ∈ dom(𝜎) we have Γ,Σ ⊢ 𝜎(ℓ) :Σ(ℓ).

We can now state type soundness for our language with references.

Theorem (Type soundness). If ·,Σ ⊢ 𝑒 :𝜏 and ·,Σ ⊢ 𝜎 and ⟨𝑒 , 𝜎⟩ →∗ ⟨𝑒′, 𝜎′⟩ then either 𝑒′ is a value, or
there exists 𝑒′′ and 𝜎′′ such that ⟨𝑒′, 𝜎′⟩ → ⟨𝑒′′, 𝜎′′⟩.

We can prove type soundness for our language using the same strategy as for the simply-typed
lambda calculus: using the preservation and progress lemmas. The progress lemma can be easily
adapted for the semantics and type system for references. Adapting preservation is a little more
involved, since we need to describe how the store typing changes as the store evolves. The rule
ALLOC extends the store 𝜎 with a fresh location ℓ , producing store 𝜎′. Since dom(Σ) = dom(𝜎) ≠
dom(𝜎′), it means that we will not have 𝜎′ well-typed with respect to typing store Σ.

Since the store can increase in size during the evaluation of the program, we also need to allow
the store typing to grow as well.

Lemma (Preservation). If Γ,Σ ⊢ 𝑒 : 𝜏 and Γ,Σ ⊢ 𝜎 and ⟨𝑒 , 𝜎⟩ → ⟨𝑒′, 𝜎′⟩ then there exists some Σ′ ⊇ Σ
such that Γ,Σ′ ⊢ 𝑒′ :𝜏 and Γ,Σ′ ⊢ 𝜎′.

We write Σ′ ⊇ Σ to mean that for all ℓ ∈ dom(Σ) we have Σ(ℓ) = Σ′(ℓ). This makes sense if
we think of partial functions as sets of pairs: Σ ≡ {(ℓ , 𝑣) | ℓ ∈ dom(Σ) ∧ Σ(ℓ) = 𝑣}. Note that the
preservation lemma states simply that there is some store type Σ′ ⊇ Σ, but does not specify what

3

exactly that store typing is. Intuitively, Σ′ will either be Σ, or Σ extended with a newly allocated
location.

Interestingly, references are enough to recover Turing completeness. For example, to implement
a recursive function 𝑓 we can initialize a reference cell containing a dummy value for 𝑓 and then
“backpatch” it with the actual definition. For example, here is an implementation of the familiar
factorial function, written using let expressions, conditionals, and natural numbers for clarity.

let 𝑟 = ref 𝜆𝑥. 0 in
𝑟 := 𝜆𝑥 : int. if 𝑥 = 0 then 1 else 𝑥× !𝑟 (𝑥 − 1)

This trick is known as “Landin’s knot” after its inventor.

1.4 Fixed Points

Another way to obtain fixed points in the simply-typed lambda calculus is to simply add a new
primitive fix to the language. The evaluation rules for the new primitive mimic the behavior of the
fixed-point combinators we saw previously.

We extend the syntax with the new primitive operator. Intuitively, fix 𝑒 is the fixed-point of the
function 𝑒. Note that fix 𝑣 is not a value.

𝑒 ::= · · · | fix 𝑒

We extend the operational semantics for the new operator. There is a new evaluation context,
and a new axiom.

𝐸 ::= · · · | fix 𝐸 fix 𝜆𝑥 :𝜏. 𝑒 → 𝑒{(fix 𝜆𝑥 :𝜏. 𝑒)/𝑥}
Note that we can define the letrec 𝑥 :𝜏 = 𝑒1 in 𝑒2 construct in terms of the fix operator.

letrec 𝑥 :𝜏 = 𝑒1 in 𝑒2 ≜ let 𝑥 = fix 𝜆𝑥 :𝜏. 𝑒1 in 𝑒2

The typing rule for fix is left as an exercise.
Returning to our trusty factorial example, the following program implements the factorial func-

tion using the fix operator.

FACT ≜ fix 𝜆 𝑓 : int → int.𝜆𝑛 : int. if 𝑛 = 0 then 0 else 𝑛 × (𝑓 (𝑛 − 1))
Note that we can write non-terminating computations for any type: the expression fix 𝜆𝑥 :𝜏. 𝑥 has
type 𝜏, and does not terminate.

Although the fix operator is normally used to define recursive functions, it can be used to find
fixed points of any type. For example, consider the following expression.

fix 𝜆𝑥 : (int → bool) × (int → bool). (𝜆𝑛 : int. if 𝑛 = 0 then true else (#2 𝑥) (𝑛 − 1),
𝜆𝑛 : int. if 𝑛 = 0 then false else (#1 𝑥) (𝑛 − 1))

This expression defines a pair of mutually recursive functions; the first function returns true if and
only if its argument is even; the second function returns true if and only if its argument is odd.

4

1.5 Exceptions

Many programming languages provide support for throwing and catching exceptions. We can
model an extremely simple form of exceptions by extending the simply-typed 𝜆-calculus with a
single exception representing an error. We first extend the syntax of the language:

𝑒 ::= · · · | error | try 𝑒1 with 𝑒2

We do not add try expressions to our evaluation contexts—doing so would allow exceptions to
“jump over” handlers. Instead, we add a special propagation rule for try:

𝑒1 → 𝑒′1
try 𝑒1 with 𝑒2 → try 𝑒′1 with 𝑒2

and rules for propagating and catching exceptions:

𝐸[error] → error try error with 𝑒 → 𝑒 try 𝑣 with 𝑒 → 𝑣

The typing rule for exceptions allows them to take any type, while the typing rule for try-with
expressions requires both sub-expressions to have the same type:

Γ ⊢ error :𝜏
Γ ⊢ 𝑒1 :𝜏 Γ ⊢ 𝑒2 :𝜏
Γ ⊢ try 𝑒1 with 𝑒2 :𝜏

The first typing rule is extremely flexible, allowing errors to be thrown anywhere in a program.
However, it is not hard to see that it causes the progress lemma to become false: the expression
error is not a value but is stuck. Fortunately, we can prove the following weaker version, which is
still strong enough to prove a useful form of type soundness.

Lemma (Progress). If ⊢ 𝑒 :𝜏 then 𝑒 is a value or 𝑒 is error or there exists 𝑒′ such that 𝑒 → 𝑒′.

The preservation theorem remains unchanged.
The actual soundness theorem is as follows:

Theorem 1 (Soundness). If ⊢ 𝑒 :𝜏 and 𝑒 →∗ 𝑒′ and 𝑒′ ̸→ then either 𝑒′ is a value or 𝑒′ is error.

5

