
CS 4110 – Programming Languages and Logics
Lecture #25: Simply-Typed Lambda Calculus

A type is a collection of computational entities that share some common property. For example,
the type int represents all expressions that evaluate to an integer, and the type int → int represents
all functions from integers to integers. The Pascal subrange type [1..100] represents all integers
between 1 and 100.

You can see types as a static approximation of the dynamic behaviors of terms and programs.
Type systems are a lightweight formal method for reasoning about behavior of a program. Uses
of type systems include: naming and organizing useful concepts; providing information (to the
compiler or programmer) about data manipulated by a program; and ensuring that the run-time
behavior of programs meet certain criteria.

In this lecture, we’ll consider a type system for the lambda calculus that ensures that values
are used correctly; for example, that a program never tries to add an integer to a function. The
resulting language (lambda calculus plus the type system) is called the simply-typed lambda calculus
(STLC).

1 Simply-typed lambda calculus

The syntax of the simply-typed lambda calculus is similar to that of untyped lambda calculus,
with the exception of abstractions. Since abstractions define functions tht take an argument, in the
simply-typed lambda calculus, we explicitly state what the type of the argument is. That is, in an
abstraction 𝜆𝑥 :𝜏. 𝑒, the 𝜏 is the expected type of the argument.

The syntax of the simply-typed lambda calculus is as follows. It includes integer literals 𝑛,
addition 𝑒1 + 𝑒2, and the unit value (). The unit value is the only value of type unit.

expressions 𝑒 ::= 𝑥 | 𝜆𝑥 :𝜏. 𝑒 | 𝑒1 𝑒2 | 𝑛 | 𝑒1 + 𝑒2 | ()
values 𝑣 ::= 𝜆𝑥 :𝜏. 𝑒 | 𝑛 | ()
types 𝜏 ::= int | unit | 𝜏1 → 𝜏2

The operational semantics of the simply-typed lambda calculus are the same as the untyped lambda
calculus. For completeness, we present the CBV small step operational semantics here.

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸 | 𝐸 + 𝑒 | 𝑣 + 𝐸
CONTEXT

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′]

𝛽-REDUCTION (𝜆𝑥 :𝜏. 𝑒) 𝑣 → 𝑒{𝑣/𝑥} ADD
𝑛1 + 𝑛2 → 𝑛

𝑛 = 𝑛1 + 𝑛2

1.1 The typing relation

The presence of types does not alter the evaluation of an expression at all. So what use are types?

1

We will use types to restrict what expressions we will evaluate. Specifically, the type system
for the simply-typed lambda calculus will ensure that any well-typed program will not get stuck.
A term 𝑒 is stuck if 𝑒 is not a value and there is no term 𝑒′ such that 𝑒 → 𝑒′. For example, the
expression 42 + 𝜆𝑥. 𝑥 is stuck: it attempts to add an integer and a function; it is not a value, and
there is no operational rule that allows us to reduce this expression. Another stuck expression is
() 47, which attempts to apply the unit value to an integer.

We introduce a relation (or judgment) over typing contexts (or type environments) Γ, expressions
𝑒, and types 𝜏. The judgment

Γ ⊢ 𝑒 :𝜏

is read as “𝑒 has type 𝜏 in context Γ”.
A typing context is a sequence of variables and their types. In the typing judgment Γ ⊢ 𝑒 :𝜏, we

will ensure that if 𝑥 is a free variable of 𝑒, then Γ associates 𝑥 with a type. We can view a typing
context as a partial function from variables to types. We will write Γ, 𝑥 : 𝜏 or Γ[𝑥 ↦→ 𝜏] to indicate
the typing context that extends Γ by associating variable 𝑥 with with type 𝜏. The empty context is
sometimes written ∅, or often just not written at all. For example, we write ⊢ 𝑒 :𝜏 to mean that the
closed term 𝑒 has type 𝜏 under the empty context.

Given a typing environment Γ and expression 𝑒, if there is some 𝜏 such that Γ ⊢ 𝑒 : 𝜏, we say
that 𝑒 is well-typed under context Γ; if Γ is the empty context, we say 𝑒 is well-typed.

We define the judgment Γ ⊢ 𝑒 :𝜏 inductively.

T-INT
Γ ⊢ 𝑛 : int

T-ADD
Γ ⊢ 𝑒1 : int Γ ⊢ 𝑒2 : int

Γ ⊢ 𝑒1 + 𝑒2 : int
T-UNIT

Γ ⊢ () :unit

T-VAR
Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 :𝜏
T-ABS

Γ, 𝑥 :𝜏 ⊢ 𝑒 :𝜏′

Γ ⊢ 𝜆𝑥 :𝜏. 𝑒 :𝜏 → 𝜏′
T-APP

Γ ⊢ 𝑒1 :𝜏 → 𝜏′ Γ ⊢ 𝑒2 :𝜏
Γ ⊢ 𝑒1 𝑒2 :𝜏′

An integer 𝑛 always has type int. Expression 𝑒1 + 𝑒2 has type int if both 𝑒1 and 𝑒2 have type int.
The unit value () always has type unit.

Variable 𝑥 has whatever type the context associates with 𝑥. Note that Γ must contain an asso-
ciation for 𝑥 in order for the judgment Γ ⊢ 𝑥 :𝜏 to hold, that is, 𝑥 ∈ dom(Γ). The abstraction 𝜆𝑥 :𝜏. 𝑒
has the function type 𝜏 → 𝜏′ if the function body 𝑒 has type 𝜏′ under the assumption that 𝑥 has
type 𝜏. Finally, an application 𝑒1 𝑒2 has type 𝜏′ provided that 𝑒1 is a function of type 𝜏 → 𝜏′, and
𝑒2 is an argument of the expected type, i.e., of type 𝜏.

To type check an expression 𝑒, we attempt to construct a derivation of the judgment ⊢ 𝑒 :𝜏, for
some type 𝜏. For example, consider the program (𝜆𝑥 : int. 𝑥 + 40) 2. The following is a proof that
(𝜆𝑥 : int. 𝑥 + 40) 2 is well-typed.

T-APP
T-ABS

T-ADD
T-VAR

𝑥 : int ⊢ 𝑥 : int
T-INT

𝑥 : int ⊢ 40: int
𝑥 : int ⊢ 𝑥 + 40: int

⊢ 𝜆𝑥 : int. 𝑥 + 40: int → int
T-INT ⊢ 2: int

⊢ (𝜆𝑥 : int. 𝑥 + 40) 2: int

2

1.2 Type soundness

Wementioned above that the type system ensures that any well-typed program does not get stuck.
We can state this property formally.

Theorem (Type soundness). If ⊢ 𝑒 :𝜏 and 𝑒 →∗ 𝑒′ and 𝑒′ ̸→ then 𝑒′ is a value and ⊢ 𝑒′ :𝜏.

We will prove this theorem using two lemmas: preservation and progress. Intuitively, preserva-
tion says that if an expression 𝑒 is well-typed, and 𝑒 can take a step to 𝑒′, then 𝑒′ is well-typed. That
is, evaluation preserves well-typedness. Progress says that if an expression 𝑒 is well-typed, then
either 𝑒 is a value, or there is an 𝑒′ such that 𝑒 can take a step to 𝑒′. That is, well-typedness means
that the expression cannot get stuck.

Together, these two lemmas suffice to prove type soundness. Given the preservation lemma, a
trivial induction on the number of steps taken to reach 𝑒′ from 𝑒 establishes that ⊢ 𝑒′ : 𝜏. Then the
progress lemma ensures that, if 𝑒′ cannot take a step, then it must be a value.

1.3 Preservation

To prove preservation, we will need some extra tiny lemmas.

Lemma (Substitution). If 𝑥 :𝜏′ ⊢ 𝑒 :𝜏 and ⊢ 𝑣 :𝜏′ then ⊢ 𝑒{𝑣/𝑥} :𝜏.

Lemma (Context). If ⊢ 𝐸[𝑒] :𝜏 and ⊢ 𝑒 :𝜏′ and ⊢ 𝑒′ :𝜏′ then ⊢ 𝐸[𝑒′] :𝜏.

We’ll assume these without proof. (They’re not difficult, but the proof of substitution can get
rather long.) Equipped with these little lemmas, we’re ready to move on to the main proof of
preservation.

A quick note on proof strategy: to prove preservation, it’s possible to induct either on the typing
relation or on the small-step relation. Both have their advantages and disadvantages; we’ll use the
small-step relation here.

Lemma (Preservation). If ⊢ 𝑒 :𝜏 and 𝑒 → 𝑒′ then ⊢ 𝑒′ :𝜏.

Proof. Assume ⊢ 𝑒 : 𝜏 and 𝑒 → 𝑒′. We need to show ⊢ 𝑒′ : 𝜏. We will do this by induction on the
derivation of 𝑒 → 𝑒′.

• ADD
Here, 𝑒 ≡ 𝑛1 + 𝑛2, and 𝑒′ = 𝑛 where 𝑛 = 𝑛1 + 𝑛2.
There is only one typing rule that applies to addition expressions, T-ADD, from which we
know 𝜏 = int.
By the typing rule T-INT, we have ⊢ 𝑒′ : int as required.

• 𝛽-REDUCTION
Here, 𝑒 ≡ (𝜆𝑥 :𝜏′. 𝑒1) 𝑣 and 𝑒′ ≡ 𝑒1{𝑣/𝑥}.
Since 𝑒 is well-typed by assumption, we have derivations showing ⊢ 𝜆𝑥 : 𝜏′. 𝑒1 : 𝜏′ → 𝜏 and
⊢ 𝑣 :𝜏′. There is only one typing rule for abstractions, T-ABS, fromwhichwe know 𝑥 :𝜏′ ⊢ 𝑒1 :𝜏.
By our substitution lemma above, we have ⊢ 𝑒1{𝑣/𝑥} :𝜏 as required.

3

• CONTEXT
Here, we have some context 𝐸 such that 𝑒 = 𝐸[𝑒1] and 𝑒′ = 𝐸[𝑒2] for some 𝑒1 and 𝑒2 such that
𝑒1 → 𝑒2.
Since 𝑒 is well-typed, we can show by induction on the structure of 𝐸 that ⊢ 𝑒1 : 𝜏1 for some
𝜏1. (This simple sub-induction is left as an exercise.)
By the induction hypothesis and because we know 𝑒1 → 𝑒2, we have ⊢ 𝑒2 :𝜏1. (Put intuitively,
𝑒2 has the same type as the one we just established for 𝑒1.)
By our context lemma above, we have ⊢ 𝐸[𝑒2] :𝜏 as required.

1.4 Progress

To prove our progress lemma, we’ll need one extra lemma that gives us the syntax forms for closed
terms.

Lemma (Canonical Forms). If ⊢ 𝑣 :𝜏, then

1. If 𝜏 is int, then 𝑣 is a constant, i.e., some 𝑐.

2. If 𝜏 is 𝜏1 → 𝜏2, then 𝑣 is an abstraction, i.e., 𝜆𝑥 : 𝜏1. 𝑒 for some 𝑥 and 𝑒.

Proof. The proof is by inspection of the typing rules.

i If 𝜏 is int, then the only rule which lets us give a value this type is T-INT.

ii If 𝜏 is 𝜏1 → 𝜏2, then the only rule which lets us give a value this type is T-ABS.

Now we’re ready to prove progress.

Lemma (Progress). If ⊢ 𝑒 :𝜏 then either 𝑒 is a value or there exists an 𝑒′ such that 𝑒 → 𝑒′.

Proof. We proceed by induction on the derivation of ⊢ 𝑒 :𝜏.

• T-VAR
This case is impossible, since a variable is not well-typed in the empty environment.

• T-UNIT, T-INT, T-ABS
In all of these cases, 𝑒 is a value.

• T-ADD
Here 𝑒 ≡ 𝑒1 + 𝑒2 and ⊢ 𝑒1 : int and ⊢ 𝑒2 : int. By the inductive hypothesis, for 𝑖 ∈ {1, 2} (i.e., for
both 𝑒1 and 𝑒2), either 𝑒𝑖 is a value or there is an 𝑒′𝑖 such that 𝑒𝑖 → 𝑒′𝑖 .
If 𝑒1 is not a value, we have from above that 𝑒1 → 𝑒′1. Therefore, by the CONTEXT rule, 𝑒1+𝑒2 →
𝑒′1 + 𝑒2.
Otherwise, 𝑒1 is a value. If 𝑒2 is not a value, then by CONTEXT again, 𝑒1 + 𝑒2 → 𝑒1 + 𝑒′2.
Otherwise, both 𝑒1 and 𝑒2 are values. By our canonical forms lemma, 𝑒1 = 𝑛1 and 𝑒2 = 𝑛2 are
both integer literals. By the ADD rule, we have 𝑒1 + 𝑒2 → 𝑛 where 𝑛 = 𝑛1 + 𝑛2.

4

• T-APP
Here 𝑒 ≡ 𝑒1 𝑒2 and ⊢ 𝑒1 :𝜏′ → 𝜏 and ⊢ 𝑒2 :𝜏′. By the inductive hypothesis, for 𝑖 ∈ {1, 2}, either
𝑒𝑖 is a value or there is an 𝑒′𝑖 such that 𝑒𝑖 → 𝑒′𝑖 .
If 𝑒1 is not a value, then by the above and by applying the CONTEXT rule, 𝑒1 𝑒2 → 𝑒′1 𝑒2.
Otherwise, 𝑒1 is a value. If 𝑒2 is not a value, then by CONTEXT, 𝑒1 𝑒2 → 𝑒1 𝑒′2.
If 𝑒1 and 𝑒2 are values, then, by our canonical forms lemma, 𝑒1 is an abstraction 𝜆𝑥 : 𝜏′. 𝑒′.
Therefore, by 𝛽-REDUCTION, we have 𝑒1 𝑒2 → 𝑒′{𝑒2/𝑥}.

2 Type Completeness?

Not all expressions in the untyped lambda calculus are well-typed. Type soundness implies that
any lambda calculus program that gets stuck is not well-typed.

But are there programs that do not get stuck that are not well-typed? In other words, does our
type system unjustly rule out legal programs?

Unfortunately, the answer is yes. In particular, because the simply-typed lambda calculus re-
quires us to specify a type for function arguments, any given function can only take arguments of
one type. Consider, for example, the identity function 𝜆𝑥. 𝑥. This function may be applied to any
argument, and it will not get stuck. However, we must provide a type for the argument. If we
specify 𝜆𝑥 : int. 𝑥, then this function can only accept integers, and the program (𝜆𝑥 : int. 𝑥) () is not
well-typed, even though it does not get stuck. Indeed, in the simply-typed lambda calculus, there
is a different identity function for each type.

5

	Simply-typed lambda calculus
	The typing relation
	Type soundness
	Preservation
	Progress

	Type Completeness?

