
CS 4110 – Programming Languages and Logics
Lecture #21: Continuations

1 Continuations

In each of the preceding translations, the control structure of the source language was translated
directly into the corresponding control structure in the target language. For example:

𝒯 [[𝜆𝑥. 𝑒]] = 𝜆𝑥.𝒯 [[𝑒]]
𝒯 [[𝑒1 𝑒2]] = 𝒯 [[𝑒1]] 𝒯 [[𝑒2]]

This style of translation works well when the source language is similar to the target language.
However, when the control structures of the source and target languages differ more substantially,
it doesn’t work as well.

Continuations are a programming technique that may be used directly by a programmer, or
used in program transformations by a compiler. Because they make the control flow of the pro-
gram explicit, they can be used to overcome discrepancies between source and target languages in
definitional translation. They can also be used to define the semantics of control-flow constructs
such as exceptions.

Intuitively, a continuation represents “the rest of the program.” Consider the program

if foo < 10 then 32 + 6 else 7 + bar

and consider the evaluation of the expression foo < 10. When we finish evaluating this subexpres-
sion, we will evaluate the if statement, and then evaluate the appropriate branch. The continuation
of the subexpression foo < 10 is the rest of the computation that will occur after we evaluate the
subexpression. We can write this continuation as a function that takes the result of the subexpres-
sion:

(𝜆𝑦. if 𝑦 then 32 + 6 else 7 + bar) (foo < 10)
The evaluation order and result of this program will be the same as the original expression; the
difference is that we extracted the continuation of the subexpression in to a function.

The nice thing about continuations is that it makes the control explicit, and this is especially
useful in the case of functional programs, where control is not explicit otherwise. In fact, we can
rewrite a program to make continuations more explicit. Let’s consider another program, and con-
vert it so that continuations are explicit

(𝜆𝑥. 𝑥) ((1 + 2) + 3) + 4

We’ll start by defining a continuation for the outermost evaluation context, which takes a value,
and applies the identity function to it.

𝑘0 = 𝜆𝑣. (𝜆𝑥. 𝑥) 𝑣

1

The evaluation context that is evaluated next-to-last takes a value, adds 4 to it, and then passes the
result to 𝑘0.

𝑘1 = 𝜆𝑎. 𝑘0 (𝑎 + 4)
Likewise, for the next evaluation contexts.

𝑘2 = 𝜆𝑏. 𝑘1 (𝑏 + 3)
𝑘3 = 𝜆𝑐. 𝑘2 (𝑐 + 2)

The program itself is now equivalent to 𝑘3 1. Since let 𝑥 = 𝑒 in 𝑒′ is just syntactic sugar for (𝜆𝑥. 𝑒′) 𝑒,
we can actually rewrite the above as

let 𝑐 = 1 in
let 𝑏 = 𝑐 + 2 in
let 𝑎 = 𝑏 + 3 in
let 𝑣 = 𝑎 + 4 in
(𝜆𝑥. 𝑥) 𝑣

This is fairly close to some machine instructions of the form:

set 𝑐, 1
add 𝑏, 𝑐, 2
add 𝑎, 𝑏, 3
add 𝑣, 𝑎, 4
call id, 𝑣

Using continuations, functions can be transformed into “functions that don’t return”—i.e., func-
tions that take, besides the usual arguments, an additional argument representing a continuation.
When the function finishes, it invokes the continuation on its result, instead of returning the result
to its caller. Writing functions in this way is usually referred to as Continuation-Passing Style, or
CPS for short. For instance, the CPS version of factorial looks like the following:

FACT𝑐𝑝𝑠 = Y 𝜆 𝑓 .𝜆𝑛, 𝑘. if 𝑛 = 0 then 𝑘 1 else 𝑓 (𝑛 − 1) (𝜆𝑣. 𝑘 (𝑛 ∗ 𝑣))
Note that the last thing that code in FACT𝑐𝑝𝑠 does is call a function (either 𝑘 or 𝑓), and does not do
anything with the result.

Continuation-passing style is an important concept in the compilation of functional languages
and is used as an intermediate compiler representation (it has been used in compilers for Scheme,
ML, etc). The main advantage is that CPS makes the control flow explicit and makes it easier to
translate functional code to machine code where control is explicit (in the form of sequences of
machine instructions and jumps). For instance, a CPS call can be easily translated into a jump to
the invoked method, since the invoked function does not return the control.

1.1 CPS translation

We can translate𝜆-calculus programs into continuation-passing style. We define a translation func-
tion 𝒞𝒫𝒮[[·]], which takes a CBV 𝜆-calculus expression, and translates the expression to a CBV
𝜆-calculus expression in continuation-passing style.

2

Let’s consider a translation from 𝜆-calculus with pairs and integers. The syntax of the source
language is as follows.

𝑒 ::= 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2 | 𝑛 | 𝑒1 + 𝑒2 | (𝑒1 , 𝑒2) | #1 𝑒 | #2 𝑒

The translation𝒞𝒫𝒮[[𝑒]]will produce a function that whose argument is the continuation to which
to pass the result. That is, for all expressions 𝑒, the translation is of the form 𝒞𝒫𝒮[[𝑒]] = 𝜆𝑘. . . . ,
where 𝑘 is a continuation. We will both assume and guarantee that for any expression 𝑒, the trans-
lation 𝒞𝒫𝒮[[𝑒]] = 𝜆𝑘. . . . will apply 𝑘 to the result of evaluating 𝑒.

For convenience, instead of writing 𝒞𝒫𝒮[[𝑒]] = 𝜆𝑘. . . . we write 𝒞𝒫𝒮[[𝑒]] 𝑘 =

𝒞𝒫𝒮[[𝑛]] 𝑘 = 𝑘 𝑛

𝒞𝒫𝒮[[𝑒1 + 𝑒2]] 𝑘 = 𝒞𝒫𝒮[[𝑒1]] (𝜆𝑛.𝒞𝒫𝒮[[𝑒2]] (𝜆𝑚. 𝑘 (𝑛 + 𝑚))) 𝑛 is not a free variable of 𝑒2

𝒞𝒫𝒮[[(𝑒1 , 𝑒2)]] 𝑘 = 𝒞𝒫𝒮[[𝑒1]] (𝜆𝑣.𝒞𝒫𝒮[[𝑒2]] (𝜆𝑤. 𝑘 (𝑣, 𝑤))) 𝑣 is not a free variable of 𝑒2

𝒞𝒫𝒮[[#1 𝑒]] 𝑘 = 𝒞𝒫𝒮[[𝑒]] (𝜆𝑣. 𝑘 (#1 𝑣))
𝒞𝒫𝒮[[#2 𝑒]] 𝑘 = 𝒞𝒫𝒮[[𝑒]] (𝜆𝑣. 𝑘 (#2 𝑣))

𝒞𝒫𝒮[[𝑥]] 𝑘 = 𝑘 𝑥

𝒞𝒫𝒮[[𝜆𝑥. 𝑒]] 𝑘 = 𝑘 (𝜆𝑥.𝜆𝑘′.𝒞𝒫𝒮[[𝑒]] 𝑘′) 𝑘′ is not a free variable of 𝑒
𝒞𝒫𝒮[[𝑒1 𝑒2]] 𝑘 = 𝒞𝒫𝒮[[𝑒1]] (𝜆 𝑓 .𝒞𝒫𝒮[[𝑒2]] (𝜆𝑣. 𝑓 𝑣 𝑘)) 𝑓 is not a free variable of 𝑒2

We translate a function 𝜆𝑥. 𝑒 to a function that takes an additional argument 𝑘′, which is the con-
tinuation after the function application. That is, 𝑘′ is the continuation to which we hand the result
of evaluating the function body. In function application, we see that in addition to the actual ar-
gument, we also give the continuation as the additional argument.

Let’s see an example translation and execution...

𝒞𝒫𝒮[[(𝜆𝑎. 𝑎 + 6) 7]] ID = 𝒞𝒫𝒮[[(𝜆𝑎. 𝑎 + 6)]] (𝜆 𝑓 .𝒞𝒫𝒮[[7]] (𝜆𝑣. 𝑓 𝑣 ID))
= (𝜆 𝑓 .𝒞𝒫𝒮[[7]] (𝜆𝑣. 𝑓 𝑣 ID)) (𝜆𝑎, 𝑘′.𝒞𝒫𝒮[[𝑎 + 6]]𝑘′)
= (𝜆 𝑓 . (𝜆𝑣. 𝑓 𝑣 ID) 7) (𝜆𝑎, 𝑘′.𝒞𝒫𝒮[[𝑎 + 6]]𝑘′)
= (𝜆 𝑓 . (𝜆𝑣. 𝑓 𝑣 ID) 7) (𝜆𝑎, 𝑘′.𝒞𝒫𝒮[[𝑎]] (𝜆𝑛.𝒞𝒫𝒮[[6]] (𝜆𝑚. 𝑘′ (𝑚 + 𝑛))))
= (𝜆 𝑓 . (𝜆𝑣. 𝑓 𝑣 ID) 7) (𝜆𝑎, 𝑘′.𝒞𝒫𝒮[[𝑎]] (𝜆𝑛. (𝜆𝑚. 𝑘′ (𝑚 + 𝑛)) 6))
= (𝜆 𝑓 . (𝜆𝑣. 𝑓 𝑣 ID) 7) (𝜆𝑎, 𝑘′. (𝜆𝑛. (𝜆𝑚. 𝑘′ (𝑚 + 𝑛)) 6) 𝑎)
→ (𝜆𝑣. (𝜆𝑎, 𝑘′. (𝜆𝑛. (𝜆𝑚. 𝑘′ (𝑚 + 𝑛)) 6) 𝑎) 𝑣 ID) 7
→ (𝜆𝑎, 𝑘′. (𝜆𝑛. (𝜆𝑚. 𝑘′ (𝑚 + 𝑛)) 6) 𝑎) 7 ID
→ (𝜆𝑛. (𝜆𝑚. ID (𝑚 + 𝑛)) 6) 7
→ (𝜆𝑚. ID (𝑚 + 7)) 6
→ ID (6 + 7)
→ ID 13
→ 13

3

	Continuations
	CPS translation

