
CS 4110 – Programming Languages and Logics
Lecture #20: Evaluation Contexts and Definitional Translation

1 Definitional translation

We have seen how to encode a number of high-level language constructs—booleans, conditionals,
natural numbers, and recursion—in 𝜆-calculus. We now consider definitional translation, where
we define the meaning of language constructs by translation to another language. This is a form
of denotational semantics, but instead of the target being mathematical objects, it is a simpler pro-
gramming language (such as 𝜆-calculus). Note that definitional translation does not necessarily
produce clean or efficient code; rather, it defines the meaning of the source language constructs in
terms of the target language.

For each language construct, we will define an operational semantics directly, and then give an
alternate semantics by translation to a simpler language. We will start by introducing evaluation
contexts, which make it easier to present the new language features succinctly.

1.1 Evaluation contexts

Recall the syntax and CBV operational semantics for the lambda calculus:

𝑒 ::= 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2
𝑣 ::= 𝜆𝑥. 𝑒

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑣1 𝑒2 → 𝑣1 𝑒′2

𝛽-REDUCTION (𝜆𝑥. 𝑒) 𝑣 → 𝑒{𝑣/𝑥}
Of the operational semantics rules, only the 𝛽-reduction rule told us how to “reduce” an expression;
the other two rules tell us the order to evaluate expressions—e.g., evaluate the left hand side of an
application to a value first, then evaluate the right hand side of an application to a value. The
operational semantics of many of the languages we will consider have this feature: there are two
kinds of rules, congruence rules that specify evaluation order, and the computation rules that specify
the “interesting” reductions.

Evaluation contexts are a simple mechanism that separates out these two kinds of rules. An eval-
uation context 𝐸 (sometimes written 𝐸[·]) is an expression with a “hole” in it, that is with a single
occurrence of the special symbol [·] (called the “hole”) in place of a subexpression. Evaluation con-
texts are defined using a BNF grammar that is similar to the grammar used to define the language.
The following grammar defines evaluation contexts for the pure CBV 𝜆-calculus.

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸

We write 𝐸[𝑒] to mean the evaluation context 𝐸 where the hole has been replaced with the
expression 𝑒. The following are examples of evaluation contexts, and evaluation contexts with the

1

hole filled in by an expression.

𝐸1 = [·] (𝜆𝑥. 𝑥) 𝐸1[𝜆𝑦. 𝑦 𝑦] = (𝜆𝑦. 𝑦 𝑦) 𝜆𝑥. 𝑥
𝐸2 = (𝜆𝑧. 𝑧 𝑧) [·] 𝐸2[𝜆𝑥.𝜆𝑦. 𝑥] = (𝜆𝑧. 𝑧 𝑧) (𝜆𝑥.𝜆𝑦. 𝑥)
𝐸3 = ([·] 𝜆𝑥. 𝑥 𝑥) ((𝜆𝑦. 𝑦) (𝜆𝑦. 𝑦)) 𝐸3[𝜆 𝑓 .𝜆𝑔. 𝑓 𝑔] = ((𝜆 𝑓 .𝜆𝑔. 𝑓 𝑔) 𝜆𝑥. 𝑥 𝑥) ((𝜆𝑦. 𝑦) (𝜆𝑦. 𝑦))

Using evaluation contexts, we can define the evaluation semantics for the pure CBV 𝜆-calculus
with just two rules, one for evaluation contexts, and one for 𝛽-reduction.

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′] 𝛽-REDUCTION (𝜆𝑥. 𝑒) 𝑣 → 𝑒{𝑣/𝑥}
Note that the evaluation contexts for the CBV 𝜆-calculus ensure that we evaluate the left hand side
of an application to a value, and then evaluate the right hand side of an application to a value
before applying 𝛽-reduction.

We can specify the operational semantics of CBN 𝜆-calculus using evaluation contexts:

𝐸 ::= [·] | 𝐸 𝑒
𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′] 𝛽-REDUCTION (𝜆𝑥. 𝑒1) 𝑒2 → 𝑒1{𝑒2/𝑥}
We’ll see the benefit of evaluation contexts as we see languages with more syntactic constructs.

1.2 Multi-argument functions and currying

Our syntax for functions only allows function with a single argument: 𝜆𝑥. 𝑒. We could define a
language that allows functions to have multiple arguments.

𝑒 ::= 𝑥 | 𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒 | 𝑒0 𝑒1 . . . 𝑒𝑛

Here, a function 𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒 takes 𝑛 arguments, with names 𝑥1 through 𝑥𝑛 . In a multi argument
application 𝑒0 𝑒1 . . . 𝑒𝑛 , we expect 𝑒0 to evaluate to an 𝑛-argument function, and 𝑒1 , . . . , 𝑒𝑛 are the
arguments that we will give the function.

We can define a CBV operational semantics for the multi-argument 𝜆-calculus as follows.

𝐸 ::= [·] | 𝑣0 . . . 𝑣𝑖−1 𝐸 𝑒𝑖+1 . . . 𝑒𝑛

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′]

𝛽-REDUCTION (𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒0) 𝑣1 . . . 𝑣𝑛 → 𝑒0{𝑣1/𝑥1}{𝑣2/𝑥2} . . . {𝑣𝑛/𝑥𝑛}
The evaluation contexts ensure that we evaluate a multi-argument application 𝑒0 𝑒1 . . . 𝑒𝑛 by eval-
uating each expression from left to right down to a value.

Now, the multi-argument 𝜆-calculus isn’t any more expressive that the pure 𝜆-calculus. We
can show this by showing how any multi-argument 𝜆-calculus program can be translated into an
equivalent pure 𝜆-calculus program. We define a translation function 𝒯 [[·]] that takes an expres-
sion in the multi-argument 𝜆-calculus and returns an equivalent expression in the pure 𝜆-calculus.
That is, if 𝑒 is a multi-argument lambda calculus expression, 𝒯 [[𝑒]] is a pure 𝜆-calculus expression.

2

We define the translation as follows.

𝒯 [[𝑥]] = 𝑥

𝒯 [[𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒]] = 𝜆𝑥1. . . . 𝜆𝑥𝑛 .𝒯 [[𝑒]]
𝒯 [[𝑒0 𝑒1 𝑒2 . . . 𝑒𝑛]] = (. . . ((𝒯 [[𝑒0]] 𝒯 [[𝑒1]]) 𝒯 [[𝑒2]]) . . . 𝒯 [[𝑒𝑛]])

This process of rewriting a function that takes multiple arguments as a chain of functions that
each take a single argument is called currying. Consider a mathematical function that takes two
arguments, the first from domain 𝐴 and the second from domain 𝐵, and returns a result from
domain 𝐶. We could describe this function, using mathematical notation for domains of functions,
as being an element of 𝐴 × 𝐵 → 𝐶. Currying this function produces a function that is an element
of 𝐴 → (𝐵 → 𝐶). That is, the curried version of the function takes an argument from domain 𝐴,
and returns a function that takes an argument from domain 𝐵 and produces a result of domain 𝐶.

2 Products and let

A product is a pair of expressions (𝑒1 , 𝑒2). If 𝑒1 and 𝑒2 are both values, then we regard the product
as also being a value. (That is, we cannot further evaluate a product if both elements are values.)
Given a product, we can access the first or second element using the operators #1 and #2 respec-
tively. That is, #1 (𝑣1 , 𝑣2) → 𝑣1 and #2 (𝑣1 , 𝑣2) → 𝑣2. (Other common notation for projection
includes 𝜋1 and 𝜋2, and fst and snd.)

The syntax of 𝜆-calculus extended with products and let expressions is defined as follows.

𝑒 ::= 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2

| (𝑒1 , 𝑒2) | #1 𝑒 | #2 𝑒

| let 𝑥 = 𝑒1 in 𝑒2

𝑣 ::= 𝜆𝑥. 𝑒 | (𝑣1 , 𝑣2)
Note that values in this language are either functions or pairs of values.

We define a small-step CBV operational semantics for the language using evaluation contexts.

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸 | (𝐸, 𝑒) | (𝑣, 𝐸) | #1 𝐸 | #2 𝐸 | let 𝑥 = 𝐸 in 𝑒2

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′] 𝛽-REDUCTION (𝜆𝑥. 𝑒) 𝑣 → 𝑒{𝑣/𝑥}

#1 (𝑣1 , 𝑣2) → 𝑣1 #2 (𝑣1 , 𝑣2) → 𝑣2

let 𝑥 = 𝑣 in 𝑒 → 𝑒{𝑣/𝑥}

3

Next, we define an equivalent semantics by translation to the pure CBV 𝜆-calculus.

𝒯 [[𝑥]] = 𝑥

𝒯 [[𝜆𝑥. 𝑒]] = 𝜆𝑥.𝒯 [[𝑒]]
𝒯 [[𝑒1 𝑒2]] = 𝒯 [[𝑒1]] 𝒯 [[𝑒2]]

𝒯 [[(𝑒1 , 𝑒2)]] = (𝜆𝑥.𝜆𝑦.𝜆 𝑓 . 𝑓 𝑥 𝑦) 𝒯 [[𝑒1]] 𝒯 [[𝑒2]]
𝒯 [[#1 𝑒]] = 𝒯 [[𝑒]] (𝜆𝑥.𝜆𝑦. 𝑥)
𝒯 [[#2 𝑒]] = 𝒯 [[𝑒]] (𝜆𝑥.𝜆𝑦. 𝑦)

𝒯 [[let 𝑥 = 𝑒1 in 𝑒2]] = (𝜆𝑥.𝒯 [[𝑒2]]) 𝒯 [[𝑒1]]
Note that we encode a pair (𝑒1 , 𝑒2) as a value that takes a function 𝑓 , and applies 𝑓 to 𝑣1 and 𝑣2,

where 𝑣1 and 𝑣2 are the result of evaluating 𝑒1 and 𝑒2 respectively. The projection operators pass
a function to the encoding of pairs that selects either the first or second element as appropriate.
Also note that the expression let 𝑥 = 𝑒1 in 𝑒2 is equivalent to the application (𝜆𝑥. 𝑒2) 𝑒1.

3 Laziness

In previous lectures we defined semantics for both the call-by-name 𝜆-calculus and the call-by-
value 𝜆-calculus. It turns out that we can translate a call-by-name program into a call-by-value
program. In CBV, arguments to functions are evaluated before the function is applied; in CBN,
functions are applied as soon as possible. In the translation, we delay the evaluation of arguments
by wrapping them in a function. This is called a thunk: wrapping a computation in a function to
delay its evaluation.

Since arguments to functions are turned into thunks, when we want to use an argument in a
function body, we need to evaluate the thunk. We do so by applying the thunk (which is simply a
function); it doesn’t matter what we apply the thunk to, since the thunk’s argument is never used.

𝒯 [[𝑥]] = 𝑥 (𝜆𝑦. 𝑦)
𝒯 [[𝜆𝑥. 𝑒]] = 𝜆𝑥.𝒯 [[𝑒]]
𝒯 [[𝑒1 𝑒2]] = 𝒯 [[𝑒1]] (𝜆𝑧.𝒯 [[𝑒2]]) 𝑧 is not a free variable of 𝑒2

4 References

We can also introduce constructs for creating, reading, and updating memory locations, also called
references. The resulting language is still a functional language (since functions are first-class val-
ues), but expressions can have side-effects, that is, they can modify state. The syntax of this lan-
guage is defined as follows.

𝑒 ::= 𝑥 | 𝜆𝑥. 𝑒 | 𝑒0 𝑒1 | ref 𝑒 | !𝑒 | 𝑒1 := 𝑒2 | ℓ
𝑣 ::= 𝜆𝑥. 𝑒 | ℓ

4

Expression ref 𝑒 creates a new memory location (like a malloc), and sets the initial contents of
the location to (the result of) 𝑒. The expression ref 𝑒 itself evaluates to a memory location ℓ . Think of
a location as being like a pointer to a memory address. The expression !𝑒 assumes that 𝑒 evaluates
to a memory location, and !𝑒 evaluates to the current contents of the memory location. Expression
𝑒1 := 𝑒2 assumes that 𝑒1 evaluates to a memory location ℓ , and updates the contents of ℓ with (the
result of) 𝑒2. Locations ℓ are not intended to be used directly by a programmer: they are not part of
the surface syntax of the language, the syntax that a programmer would write. They are introduced
only by the operational semantics.

We define a small-step CBV operational semantics. We use configurations ⟨𝜎, 𝑒⟩, where 𝑒 is an
expression, and 𝜎 is a map from locations to values.

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸 | ref 𝐸 | !𝐸 | 𝐸 := 𝑒 | 𝑣 := 𝐸
⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩

⟨𝜎, 𝐸[𝑒]⟩ → ⟨𝜎′, 𝐸[𝑒′]⟩

𝛽-REDUCTION ⟨𝜎, (𝜆𝑥. 𝑒) 𝑣⟩ → ⟨𝜎, 𝑒{𝑣/𝑥}⟩ ALLOC ⟨𝜎, ref 𝑣⟩ → ⟨𝜎[ℓ ↦→ 𝑣], ℓ⟩ ℓ ∉ dom(𝜎)

DEREF ⟨𝜎, !ℓ⟩ → ⟨𝜎, 𝑣⟩ 𝜎(ℓ) = 𝑣 ASSIGN ⟨𝜎, ℓ := 𝑣⟩ → ⟨𝜎[ℓ ↦→ 𝑣], 𝑣⟩
References do not add any expressive power to the 𝜆-calculus: it is possible to translate 𝜆-

calculus with references to the pure 𝜆-calculus. Intuitively, this is achieved by explicitly represent-
ing the store, and threading the store through the evaluation of the program. The details are left
as an exercise.

5 Adequacy of translation

In each of the previous translations, we defined a semantics for the source language (using eval-
uation contexts and small-step rules) and the target language (by translation). We would like to
be able to show that the translation is correct—that is, that it preserves the meaning of source
programs.

More precisely, we would like an expression 𝑒 in the source language to evaluate to a value 𝑣
if and only if the translation of 𝑒 evaluates to a value 𝑣′ such that 𝑣′ is “equivalent to” 𝑣. What
exactly it means for 𝑣′ to be “equivalent to” 𝑣 will depend on the translation. Sometimes, it will
mean that 𝑣′ is literally the translation of 𝑣; other times, it will mean that 𝑣′ is merely related to the
translation of 𝑣 by some equivalence.

One tricky issue is that in general, there can be many ways to define equivalences on functions.
One way is to say that two functions are equivalent if they agree on the result when applied to any
value of a base type (e.g., integers or booleans). The idea is that if two functions disagree when
passed a more complex value (say, a function), then we could write a program that uses these
functions to produce functions that disagree on values of base types.

There are two criteria for a translation to be adequate: soundness and completeness. For clarity,
let’s suppose that Expsrc is the set of source language expressions, and that →src and →trg are the
evaluation relations for the source and target languages respectively. A translation is sound if every

5

target evaluation represents a source evaluation:

Soundness: ∀𝑒 ∈ Expsrc. if 𝒯 [[𝑒]] →∗
trg 𝑣′ then ∃𝑣. 𝑒 →∗

src 𝑣 and 𝑣′ equivalent to 𝑣

A translation is complete if every source evaluation has a target evaluation.

Completeness: ∀𝑒 ∈ Expsrc. if 𝑒 →∗
src 𝑣 then ∃𝑣′. 𝒯 [[𝑒]] →∗

trg 𝑣′ and 𝑣′ equivalent to 𝑣

6

	Definitional translation
	Evaluation contexts
	Multi-argument functions and currying

	Products and let
	Laziness
	References
	Adequacy of translation

