
CS 4110 – Programming Languages and Logics
Lecture #19: More 𝜆-calculus

1 Lambda calculus evaluation

There are many different evaluation strategies for the 𝜆-calculus. The most permissive is full 𝛽
reduction, which allows any redex—i.e., any expression of the form (𝜆𝑥. 𝑒1) 𝑒2—to step to 𝑒1{𝑒2/𝑥}
at any time. It is defined formally by the following small-step operational semantics rules:

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑒1 𝑒2 → 𝑒1 𝑒′2

𝑒1 → 𝑒′1
𝜆𝑥. 𝑒1 → 𝜆𝑥. 𝑒′1

𝛽 (𝜆𝑥. 𝑒1) 𝑒2 → 𝑒1{𝑒2/𝑥}
The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application
to reduce after its argument has been reduced to a value (i.e., a 𝜆-abstraction) and does not allow
evaluation under a 𝜆. It is described by the following small-step operational semantics rules (here
we show a left-to-right version of CBV):

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑣1 𝑒2 → 𝑣1 𝑒′2

𝛽 (𝜆𝑥. 𝑒1) 𝑣2 → 𝑒1{𝑣2/𝑥}
Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is
not a value but does not allow evaluation under a 𝜆. It is described by the following small-step
operational semantics rules:

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝛽 (𝜆𝑥. 𝑒1) 𝑒2 → 𝑒1{𝑒2/𝑥}

2 Confluence

It is not hard to see that the full 𝛽 reduction strategy is non-deterministic. This raises an interesting
question: does the choices made during the evaluation of an expression affect the final result? The
answer turns out to be no: full 𝛽 reduction is confluent in the following sense:

Theorem (Confluence). If 𝑒 →∗ 𝑒1 and 𝑒 →∗ 𝑒2 then there exists 𝑒′ such that 𝑒1 →∗ 𝑒′ and 𝑒2 →∗ 𝑒′.
Confluence can be depicted graphically as follows:

𝑒

𝑒1 𝑒2

𝑒′

Confluence is often also called the Church–Rosser property.

1

3 Substitution

Each of the evaluation relations for𝜆-calculus has a 𝛽 defined in terms of a substitution operation on
expressions. Because the expressions involved in the substitution may share some variable names
(and because we are working up to 𝛼-equivalence) the definition of this operation is slightly subtle
and defining it precisely turns out to be tricker than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator.
Here we are substituting 𝑒 for 𝑥 in some other expression:

𝑦{𝑒/𝑥} =

{
𝑒 if 𝑦 = 𝑥
𝑦 otherwise

(𝑒1 𝑒2){𝑒/𝑥} = (𝑒1{𝑒/𝑥}) (𝑒2{𝑒/𝑥})
(𝜆𝑦.𝑒1){𝑒/𝑥} = 𝜆𝑦.𝑒1{𝑒/𝑥} where 𝑦 ≠ 𝑥

The intuitive idea is that the last rule relies on 𝛼-equivalence to “rewrite” abstractions that use 𝑥 so
they do not conflict. Unfortunately, this definition produces the wrong results when we substitute
an expression with free variables under a 𝜆. For example,

(𝜆𝑦.𝑥){𝑦/𝑥} = (𝜆𝑦.𝑦)
To fix this problem, we need to revise our definition so that when we substitute under a 𝜆 we
do not accidentally bind variables in the expression we are substituting. The following definition
correctly implements capture-avoiding substitution:

𝑦{𝑒/𝑥} =

{
𝑒 if 𝑦 = 𝑥
𝑦 otherwise

(𝑒1 𝑒2){𝑒/𝑥} = (𝑒1{𝑒/𝑥}) (𝑒2{𝑒/𝑥})
(𝜆𝑦.𝑒1){𝑒/𝑥} = 𝜆𝑦.(𝑒1{𝑒/𝑥}) where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑒)

Note that in the case for 𝜆-abstractions, we require that the bound variable 𝑦 be different from the
variable 𝑥 we are substituting for and that 𝑦 not appear in the free variables of 𝑒, the expression
we are substituting. Because we work up to 𝛼-equivalence, we can always pick 𝑦 to satisfy these
side conditions. For example, to calculate (𝜆𝑧.𝑥 𝑧){(𝑤 𝑦 𝑧)/𝑥} we first rewrite 𝜆𝑧.𝑥 𝑧 to 𝜆𝑢.𝑥 𝑢 and
then apply the substitution, obtaining 𝜆𝑢.(𝑤 𝑦 𝑧) 𝑢 as the result.

4 𝜆-calculus encodings

The pure 𝜆-calculus contains only functions as values. It is not exactly easy to write large or in-
teresting programs in the pure 𝜆-calculus. We can however encode objects, such as booleans, and
integers.

2

4.1 Booleans

Let us start by encoding constants and operators for booleans. That is, we want to define functions
TRUE, FALSE, AND, NOT, IF, and other operators that behave as expected. For example:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE 𝑒1 𝑒2 = 𝑒1

IF FALSE 𝑒1 𝑒2 = 𝑒2

Let’s start by defining TRUE and FALSE:

TRUE ≜ 𝜆𝑥.𝜆𝑦. 𝑥

FALSE ≜ 𝜆𝑥.𝜆𝑦. 𝑦

Thus, both TRUE and FALSE are functions that take two arguments; TRUE returns the first, and
FALSE returns the second. We want the function IF to behave like

𝜆𝑏.𝜆𝑡.𝜆 𝑓 . if 𝑏 = TRUE then 𝑡 else 𝑓 .

The definitions for TRUE and FALSE make this very easy.

IF ≜ 𝜆𝑏.𝜆𝑡.𝜆 𝑓 . 𝑏 𝑡 𝑓

Definitions of other operators are also straightforward.

NOT ≜ 𝜆𝑏. 𝑏 FALSE TRUE
AND ≜ 𝜆𝑏1.𝜆𝑏2. 𝑏1 𝑏2 FALSE

OR ≜ 𝜆𝑏1.𝜆𝑏2. 𝑏1 TRUE 𝑏2

4.2 Church numerals

Church numerals encode a number 𝑛 as a function that takes 𝑓 and 𝑥, and applies 𝑓 to 𝑥 𝑛 times.

0 ≜ 𝜆 𝑓 .𝜆𝑥. 𝑥

1 = 𝜆 𝑓 .𝜆𝑥. 𝑓 𝑥

2 = 𝜆 𝑓 .𝜆𝑥. 𝑓 (𝑓 𝑥)
SUCC ≜ 𝜆𝑛.𝜆 𝑓 .𝜆𝑥. 𝑓 (𝑛 𝑓 𝑥)

In the definition for SUCC, the expression 𝑛 𝑓 𝑥 applies 𝑓 to 𝑥 𝑛 times (assuming that variable 𝑛
is the Church encoding of the natural number 𝑛). We then apply 𝑓 to the result, meaning that we
apply 𝑓 to 𝑥 𝑛 + 1 times.

Given the definition of SUCC, we can easily define addition. Intuitively, the natural number
𝑛1 + 𝑛2 is the result of apply the successor function 𝑛1 times to 𝑛2.

PLUS ≜ 𝜆𝑛1.𝜆𝑛2. 𝑛1 SUCC 𝑛2

3

	Lambda calculus evaluation
	Confluence
	Substitution
	-calculus encodings
	Booleans
	Church numerals

