CS 4110 — Programming Languages and Logics
Lecture #18: A-calculus

Lambda calculus (or A-calculus) was introduced by Alonzo Church and Stephen Cole Kleene
in the 1930s to describe functions in an unambiguous and compact manner. Many real languages
are based on the lambda calculus, including Lisp, Scheme, Haskell, and ML. A key characteristic
of these languages is that functions are values, just like integers and booleans are values: functions
can be used as arguments to functions, and can be returned from functions.

The name “lambda calculus” comes from the use of the Greek letter lambda (A) in function
definitions. (The letter lambda has no significance.) “Calculus” means a method of calculating by
the symbolic manipulation of expressions.

Intuitively, a function is a rule for determining a value from an argument. Some examples of
functions in mathematics are

fx) =3
g(y) = y* —2y* +5y - 6.

1 Syntax

The pure A-calculus contains just function definitions (called abstractions), variables, and function

application (i.e., applying a function to an argument). If we add additional data types and opera-

tions (such as integers and addition), we have an applied A-calculus. In the following text, we will

sometimes assume that we have integers and addition in order to give more intuitive examples.
The syntax of the pure A-calculus is defined as follows.

en=x variable
Ax.e abstraction

|
| e1 eo application

An abstraction Ax. e is a function: variable x is the arqument, and expression e is the body of
the function. Note that the function Ax.e doesn’t have a name. Assuming we have integers and
arithmetic operations, the expression Ax. x? is a function that takes an argument x and returns the
square of x.

An application e; e; requires that e; is (or evaluates to) a function, and then applies the function
to the expression e,. For example, (Ax. x?) 5 is, intuitively, equal to 25, the result of applying the
squaring function Ax. x? to 5.

Here are some examples of lambda calculus expressions.

Ax.x a lambda abstraction called the identity function

Ax.(f (g x))) another abstraction

(Ax.x) 42 an application

Ay.Ax.x an abstraction that ignores its argument and returns the identity function

Lambda expressions extend as far to the right as possible. For example Ax. x Ay.y is the same as
Ax.x (Ay.y), and is not the same as (Ax.x) (Ay.y). Application is left associative. For example
ey ez e3 is the same as (e; e2) es. In general, use parentheses to make the parsing of a lambda
expression clear if you are in doubt.

1.1 Variable binding and a-equivalence

An occurrence of a variable in an expression is either bound or free. An occurrence of a variable x
in a term is bound if there is an enclosing Ax. e; otherwise, it is free. A closed term is one in which
all identifiers are bound.

Consider the following term:

Ax.(x (Ay.ya)x)y
Both occurrences of x are bound, the first occurrence of y is bound, the a is free, and the last y is
also free, since it is outside the scope of the Ay.

If a program has some variables that are free, then you do not have a complete program as you
do not know what to do with the free variables. Hence, a well formed program in lambda calculus
is a closed term.

The symbol A is a binding operator, as it binds a variable within some scope (i.e., some part of
the expression): variable x is bound in e in the expression Ax.e.

. . . . 1 7
The name of bound variables is not important. Consider the mathematical integrals /0 x2dx

and f07 y2dy. They describe the same integral, even though one uses variable x and the other uses
variable y in their definition. The meaning of these integrals is the same: the bound variable is just
a placeholder. In the same way, we can change the name of bound variables without changing the
meaning of functions. Thus Ax. x is the same function as Ay. y. Expressions e; and e, that differ
only in the name of bound variables are called a-equivalent, sometimes written e; =, €.

1.2 Higher-order functions

In lambda calculus, functions are values: functions can take functions as arguments and return
functions as results. In the pure lambda calculus, every value is a function, and every result is a
function!

For example, the following function takes a function f as an argument, and applies it to the
value 42.

Af.f42
This function takes an argument v and returns a function that applies its own argument (a
function) to v.

Av . Af. (f v)

2 Semantics

2.1 p-equivalence

Application (Ax.e;) ez applies the function Ax.e; to e2. In some ways, we would like to regard
the expression (Ax. e;) ez as equivalent to the expression e; where every (free) occurrence of x is
replaced with es. For example, we would like to regard (Ax. x?) 5 as equivalent to 5.

2

We write e;{e2/x} to mean expression e; with all free occurrences of x replaced with es. There
are several different notations to express this substitution, including [x + ez]e; (used by Pierce),
[e2/x]e1 (used by Mitchell), and e;[e2/x] (used by Winskel).

Using our notation, we would like expressions (Ax. e1) ez and e;{ez/x} to be equivalent.

We call this equivalence, between (Ax.e;) e2 and ei{ez/x}, is called B-equivalence. Rewriting
(Ax.e1) ez into ej{ea/x} is called a B-reduction. Given a lambda calculus expression, we may, in
general, be able to perform S-reductions. This corresponds to executing a lambda calculus expres-
sion.

There may be more than one possible way to f-reduce an expression. Consider, for example,
(Ax.x+x) ((Ay.y) 5). We could use p-reduction to get either ((Ay.y) 5)+((Ay. y) 5) or (Ax.x +x) 5.
The order in which we perform S-reductions results in different semantics for the lambda calculus.

2.2 Call-by-value

Call-by-value (or CBV) semantics makes sure that functions are only called on values. That is, given
an application (Ax. e;) ez, CBV semantics makes sure that e; is a value before calling the function.

So, what is a value? In the pure lambda calculus, any abstraction is a value. Remember, an
abstraction Ax. e is a function; in the pure lambda calculus, the only values are functions. In an
applied lambda calculus with integers and arithmetic operations, values also include integers. In-
tuitively, a value is an expression that can not be reduced /executed /simplified any further.

We can give small step operational semantics for call-by-value execution of the lambda calculus.
Here, v can be instantiated with any value (e.g., a function).

e — e} e — e

B-REDUCTION

erex — e e ve—>uve (Ax.e)v — e{v/x}

We can see from these rules that, given an application e; e3, we first evaluate e; until itis a value,
then we evaluate e, until it is a value, and then we apply the function to the value—a p-reduction.

Let’s consider some examples. (These examples use an applied lambda calculus that also in-
cludes reduction rules for arithmetic expressions.)

Ax. Ay.yx) G+2)Ax.x+1 —=Ax. Ay.yx)7TAx.x +1
—Ay.y T Ax.x+1
—Ax.x+1)7
—7+1

—8

Af f D) ((Ax.xx)Ay.y) —=Af. f7) (Ay.y) (Ay.y))
—Af. f7) Ay y)
—(Ay.y) 7

—7

2.3 Call-by-name

Call-by-name (or CBN) semantics applies the function as soon as possible. The small step opera-
tional semantics are a little simpler, as they do not need to ensure that the expression to which a
function is applied is a value.

e — e
B-REDUCTION

ep ez —ej e (Ax.e1) e = ei{ea/x}

Let’s consider the same examples we used for CBV.

Ax. Ay.yx) (5+2) Ax.x+1 —=Ay.y (5+2)Ax.x +1
->Ax.x+1)(5+2)
—-bB+2)+1
—7+1

—8

Af. f 1) (Ax.xx)Ay.y) =((Ax.xx)Ay.y) 7
—((Ay.y) Ay.y) 7
—Ay.y) 7

—7

Note that the answers are the same, but the order of evaluation is different. (Later we will see
languages where the order of evaluation is important, and may result in different answers.)

	Syntax
	Variable binding and -equivalence
	Higher-order functions

	Semantics
	-equivalence
	Call-by-value
	Call-by-name

