CS 4110 — Programming Languages and Logics
Lecture #16: Separation Logic

So far, we have looked at a version of Hoare logic that supports reasoning about IMP programs
in terms of pre- and post-conditions on stores. In this lecture, we consider a language with pointers
and dynamic memory allocation. We define a big-step operational semantics for the language as a
relation on program states (¢,) with a store and a heap. We show how Hoare logic fails to support
modular reasoning due to aliasing between pointers. Finally, we introduce separation logic, which
extends Hoare logic’s assertions with predicates on heaps and provides a frame rule that supports
modular proofs.

1 IMP with Heaps

As a first step, we extend IMP with standard commands for manipulating values on the heap.
Note: in this lecture we will write e for arithmetic expressions rather than g, as it is more intuitive:

¢ == skip|x:=e]|cy;co|if bthen cq else ¢y | while b do ¢
| x := new(e) | free(e) | x :=xe | *e1 := e

The new commands in this language include:

* x := new(e), which evaluates ¢ to a value v, allocates storage for v on the heap, and assigns
the pointer to that storage to x in the store;

¢ x := »¢ which evaluates e to a pointer p, loads the value v associated with p from the heap,
and assigns v to x in the store;

¢ +¢ :=¢; which evaluates e; to a pointer p and e, to a value v, and then stores v at the location
associated with p on the heap; and

¢ free(e) which evaluates e to a pointer p and deallocates the heap storage associated with p.

2 Big-Step Operational Semantics
To define the semantics of this extension of IMP, we will need states that keep track both of the
local variables as well as the heap. We will model states as pairs (o, 1) where

® g € Var — Zis the store, and

* h € Addr —g, Zis the heap.

As usual, we write dom(h) for the domain of the heap and h[p +— v] for the update operation that
maps p to v and otherwise behaves like h.
In the formal semantics, commands evaluate in one big step

(o,h,c) | (0o, K)

while arithmetic and boolean expressions remain pure,

(g,e) v

Basic commands

(o,e) v

SKiIP ASSIGN
(o, h,skip) | (o, h) (o,h,x :=¢) | (o[x — v], h)

(o,h,c1) |l (o1, h1) (o1, h1,c2) | (02, ha)
(o,h,c15c9) | (02, ha)

EQ

Conditionals and loops

(o,b) Jtrue (o, h,c1) | (o', 1) (o,b) | false (o, h,c2) | (o', 1)
(0, 1,if b then c; else ca,) § 0/, 1) " (o, h,if b then ¢y else ca,) | (0,)

Ir-FALSE

(og,b) || false
(whilebdoc,) | (g,h)

WHILE-FALSE

(o,b) Utrue (o,h,c) | (01,h1) (o1,h1, whilebdoc) | (o2, h2)
(0, h,while b do c) || (02, hs)

WHILE-TRUE

Heap commands

(o,e)lp pedomh) h(p)=v (e)llp (o,e)lo pedom(h)
LoaDp STORE
(o,h,x :==e) | (o[x — 0], h) (o,h,e1 :=e2) | (o, h[p — ©])
(o,e) v p & dom(h) (o,e)p p € dom(h)
NEew FREE
(0,h,x :=new(e)) | (o[x — p], h[p — v]) (0, h, free(e)) | (o, h\{p})

3 The Rule of Constancy

The following rule is admissible in standard Hoare logic:

F{P}c{Q} fus(R)N modc=0
F{P AR} c{Q AR}

CoNsT

Here fus(R) are the free variables of R and mod (c) are the variables that ¢ may modify. For
example, fus(y = 0) = {y} and mod (x := x+1) = {x}.

Intuitively, the rule of constancy captures a form of local reasoning. It allows us to first prove a
simple Hoare triple and then extend it to a more complicated triple by conjoining the same predi-
cate to the pre- and post-conditions. For instance, using this rule so we can strengthen

{x >0} x:=x+1{x>1}

to
{x>0Ay=0tx:=x+1{x>1Ay =0}

2

Free and Modified Variables

The function fu(P) returns the set of program variables that occur free in assertion P.

folar < az) = fo(ar) U fu(az)
fo(PAQ) = fu(P)U fu(Q)
fo(PVQ) = fuP)U fu(Q)
foP = Q) = fu(P)U fu(Q)
fu(=P) = fu(P)
fo(vi. P) = fu(P)\{i}
fo(Fi.P) = fo(P)\{i}

The function mod(c) returns the set of program variables modified by command c.

mod(skip) = 0
mod(x :=e) = {x}
mod(c1;c2) = mod(cy) U mod(ca)
mod(if b then ¢y else cs) = mod(cy) U mod(ca)
mod(while b do ¢) = mod(c)
mod(x :==e) = {x}
mod(xe; :==e3) = 0
mod(x := new(e)) = {x}
mod(free(e)) = 0

Issues Related to Aliasing Unfortunately, the rule of constancy is not sound when we extend
our language of assertions with heap predicates. For example, suppose that we add an assertion
p — v, which says that the heap maps p to v. Now consider trying to use the rule of constancy to
add a “constant fact” about the heap. We might first prove the following triple:

{x—==-}s+x:=4{x —4}.
and then use the rule of constancy to obtain:
{x==Ay—=3}xx=4{x—4Ay—3}.

However, if x and y are aliases for each other, then the postcondition is false. Of course, it is possible
to complicate the pre- and post-condition to capture disjointness predicates, but this quickly be-
comes impractical—in principle, every pointer on the heap might be aliased to every other pointer,
which leads to a combinatorial explosion. Such complications motivated the development of sep-
aration logic.

4 Heap Assertions

Before defining separation logic, let us extend our language of assertions with heap predicates:
H,],K:::emp|[P] | 61“—)€2|Hl*H2|Hl/X\H2|H1\X/H2|VX.H|3x.H

Intuitively, these predicates can be understood as follows.

3

* emp : heap is empty,
* [P] : heap is empty and P holds,
® ¢; <> ey : heap consists of exactly one cell with pointer e; and value e5,

* H; % Hj : heap can be split into two disjoint pieces, one satisfying H; and the other satisfying
HZ/

* H; m Hy and H; W Hj are heap assertion versions of the standard boolean connectives, and
* Vx. H and Jx. H : are heap assertion versions of the standard quantifiers.

More formally, we can model their semantics as follows:

(0,h) |zremp if h=0
(o,h)|=1[P] if h=0Aoc|= P

(0,h) =1 e1 > e if h={(p,0)} where (c,e1); Il p and (g, e2); |
(O',h) |=[H1*H2 if E”’ll,]’lg.hzhllﬂhg/\((f,hl) |=1P1/\(0,h2) |=1P2
(0,h)|Fr Hi M\ Hy if (0, h) |51 Hyand (o, h) |51 Ho
(0,h) |F1 Hi W Hy if (0,h)|=1 Hyor (0, h) |=1 Ha

(0,h) =1 Vx. H if (0,h) |=jx—0) H forallv

(0,h) =1 3x. H if (0,h) |F[x—o) H for some v

We will often abbreviate e = — = Jv.e — v.
Note that predicates like x — 5% x — 7 are unsatisfiable as the separating conjunction operator,
*, enforces disjointness.

5 Triples and the Frame Rule

Now we will define the notion of valid triples, in both hoare and separation logic. We will present
total correctness versions, as we want programs that have been verified to be free of memory errors,
and our big-step semantics models memory errors as getting stuck.

We first define valid Hoare triples in the usual way.

Definition (Hoare Triple (Total Correctness)). A Hoare logic triple is valid, written |=poare {H} ¢ {J},
ifforall ¢, h,and I,if 6, h |=;f H then (o, h,c) || (¢/,h')and o', K’ |=1 |

Next, we define valid separation logic triples in terms of valid Hoare triples. Note that K is
universally quantified, which essentially bakes in a form of modularity, since a valid triple must
remain valid when combined with any other heap predicate.

Definition (Separation Logic Triple (Total Correctness)). A separation logic triple is valid, written
|= {H} c {J}, if for all K we have |=goare {H * K} ¢ {J] x K}

Writing h; L hy to mean that /; and hy are disjoint heaps, we can also give an equivalent
definition of valid separation logic triples.

Definition (Separation Logic Triple (Total Correctness), Alternate). A Hoare logic triple is valid,
written |=goare {H} ¢ {J}, if forall g, h1, ho and I, if 0, hy |=; H and hy L hy then (o, h1 W ho,c) ||
(o', W hy)and o', hi |=1 |

6 The Frame Rule

A major appeal of separation logic is that it supports the so-called frame rule:

F{H} c{J} Jfos(K)N modc=0
F{H % K} c {] x K}

FrRAME

The rule captures modular reasoning about the heap. Intuitively, we first prove a specification
for ¢ using only the “heap” footprint it needs. Then the command can be framed in any larger
context obtained by combining the footprint with a disjoint heap.

7 Small Axioms for Heap Commands

We can define “small” axioms for the heap-manipulating commands as follows.

; . — Loap
{e—>e'}x:=x{[x=¢€]*ke—>e"}

STORE

{x—>-}sx:=e{x—>e}

ALLoc
{emp} x :=new(e) {[x =p]*xp — ¢}

FRrREE

{e — —} free(e) { emp }

A full treatment of separation logic has other proof rules similar to Hoare logic. Interested
students are referred to two canonical treatments:

* Reynold’s lecture notes, or

¢ Chargueraud’s textbook, which this lecture is based on.

https://www.cs.cmu.edu/~jcr/copenhagen08.pdf
https://www.chargueraud.org/research/2023/hdr/chargueraud_hdr.pdf

	IMP with Heaps
	Big-Step Operational Semantics
	The Rule of Constancy
	Heap Assertions
	Triples and the Frame Rule
	The Frame Rule
	Small Axioms for Heap Commands

