
CS 4110 – Programming Languages and Logics
Lecture #10: Denotational Semantics Examples

Last time we defined the denotational semantics of IMP:

𝒜[[𝑛]] = {(𝜎, 𝑛)}
𝒜[[𝑥]] = {(𝜎, 𝜎(𝑥))}

𝒜[[𝑎1 + 𝑎2]] = {(𝜎, 𝑛) | (𝜎, 𝑛1) ∈ 𝒜[[𝑎1]] ∧ (𝜎, 𝑛2) ∈ 𝒜[[𝑎2]] ∧ 𝑛 = 𝑛1 + 𝑛2}

ℬ[[true]] = {(𝜎, true)}
ℬ[[false]] = {(𝜎, false)}

ℬ[[𝑎1 < 𝑎2]] = {(𝜎, true) | (𝜎, 𝑛1) ∈ 𝒜[[𝑎1]] ∧ (𝜎, 𝑛2) ∈ 𝒜[[𝑎2]] ∧ 𝑛1 < 𝑛2} ∪
{(𝜎, false) | (𝜎, 𝑛1) ∈ 𝒜[[𝑎1]] ∧ (𝜎, 𝑛2) ∈ 𝒜[[𝑎2]] ∧ 𝑛1 ≥ 𝑛2}

𝒞[[skip]] = {(𝜎, 𝜎)}
𝒞[[𝑥 := 𝑎]] = {(𝜎, 𝜎[𝑥 ↦→ 𝑛]) | (𝜎, 𝑛) ∈ 𝒜[[𝑎]]}
𝒞[[𝑐1; 𝑐2]] = {(𝜎, 𝜎′) | ∃𝜎′′. ((𝜎, 𝜎′′) ∈ 𝒞[[𝑐1]] ∧ (𝜎′′, 𝜎′) ∈ 𝒞[[𝑐2]])}

𝒞[[if 𝑏 then 𝑐1 else 𝑐2]] = {(𝜎, 𝜎′) | (𝜎, true) ∈ ℬ[[𝑏]] ∧ (𝜎, 𝜎′) ∈ 𝒞[[𝑐1]]} ∪
{(𝜎, 𝜎′) | (𝜎, false) ∈ ℬ[[𝑏]] ∧ (𝜎, 𝜎′) ∈ 𝒞[[𝑐2]]}

𝒞[[while 𝑏 do 𝑐]] = fix(𝐹)
where 𝐹(𝑓) = {(𝜎, 𝜎) | (𝜎, false) ∈ ℬ[[𝑏]]} ∪

{(𝜎, 𝜎′) | (𝜎, true) ∈ ℬ[[𝑏]] ∧ ∃𝜎′′. (𝜎, 𝜎′′) ∈ 𝒞[[𝑐]] ∧ (𝜎′′, 𝜎′) ∈ 𝑓 }
In this lecture we’ll prove Kleene’s fixpoint theorem, which shows that the fixed point used to

define the semantics of while commands exists, and work through examples of reasoning using
the denotational semantics.

1 Kleene’s Fixpoint Theorem

Definition (Scott Continuity). A function 𝐹 from 𝑈 to 𝑈 is said to be Scott-continuous if for every
chain 𝑋1 ⊆ 𝑋2 ⊆ . . . we have 𝐹(∪𝑖 𝑋𝑖) = ∪

𝑖 𝐹(𝑋𝑖).
It is not hard to show that if 𝐹 is Scott continuous, then it is also monotonic—that is, 𝑋 ⊆ 𝑌

implies 𝐹(𝑋) ⊆ 𝐹(𝑌). The proof of this fact is left as an exercise.

Theorem (Kleene Fixpoint). Let 𝐹 be a Scott-continuous function. The least fixed point of 𝐹 is
∪

𝑖 𝐹
𝑖(∅).

Proof. Let 𝑋 =
∪

𝑖 𝐹
𝑖(∅).

1

First, we will prove that 𝑋 is a fixed point of 𝐹—that is, 𝐹(𝑋) = 𝑋. We calculate as follows:

𝐹(𝑋) = 𝐹(∪𝑖 𝐹
𝑖(∅)) By definition of 𝑋

=
∪

𝑖 𝐹(𝐹 𝑖(∅)) By Scott continuity
=

∪
𝑖 𝐹

𝑖+1(∅)
= ∅ ∪∪

𝑖 𝐹
𝑖+1(∅)

= 𝐹0(∅) ∪∪
𝑖 𝐹

𝑖+1(∅)
=

∪
𝑖 𝐹

𝑖(∅)
= 𝑋

Second, we will show that 𝑋 is the least fixed point of 𝐹. Suppose that𝑌 is some other arbitrary
fixed point of 𝐹.

By induction, we can easily show that 𝐹 𝑖(∅) ⊆ 𝑌 for all 𝑖. For the base case, 𝑖 is 0 and we trivially
have 𝐹0(∅) = ∅ ⊆ 𝑌. For the inductive case, we assume that 𝐹 𝑖(∅) ⊆ 𝑌 and prove that 𝐹 𝑖+1(∅) ⊆ 𝑌.
By our inductive hypothesis and the fact that 𝐹 is monotone, we have that 𝐹(𝐹 𝑖(∅)) ⊆ 𝐹(𝑌). As 𝑌 is
a fixed point we also have 𝐹(𝑌) = 𝑌 and so 𝐹 𝑖+1(∅) ⊆ 𝑌.

Then, since every element of the chain

𝐹0(∅) ⊆ 𝐹1(∅) ⊆ . . .

is a subset of 𝑌 immediately we have that their union, 𝑋 =
∪

𝑖 𝐹
𝑖(∅) ⊆ 𝑌. Hence, 𝑋 is the least

(with respect to ⊆) fixed point of 𝐹.

2 Reasoning

One of the key advantages of using denotational semantics compared to operational semantics
is that proofs of equivalence can be carried out directly by simply calculating the denotations of
programs and then arguing that they are identical. This is in contrast to operational techniques,
where one must reason explicitly about low-level transitions and derivations involving ad hoc ab-
stract machines.

As an example, to show that skip; 𝑐 and 𝑐; skip are equivalent, we can calcuate as follows,

𝒞[[skip; 𝑐]] = {(𝜎, 𝜎′′) | ∃𝜎′.(𝜎, 𝜎′) ∈ 𝒞[[skip]] ∧ (𝜎′, 𝜎′′) ∈ 𝒞[[𝑐]]}
= {(𝜎, 𝜎′′) | (𝜎, 𝜎′′) ∈ 𝒞[[𝑐]]}
= {(𝜎, 𝜎′′) | ∃𝜎′.(𝜎, 𝜎′) ∈ 𝒞[[𝑐]] ∧ (𝜎′, 𝜎′′) ∈ 𝒞[[skip]]}
= 𝒞[[𝑐; skip]]

using standard facts about partial functions, relations, and sets as convenient in the proof itself.
Next, consider the command 𝒞[[while false do 𝑐]]. By the definition of the denotational seman-

tics, this is equal to fix(𝐹) where

𝐹(𝑓) = {(𝜎, 𝜎) | (𝜎, false) ∈ ℬ[[𝑏]]} ∪
{(𝜎, 𝜎′′) | (𝜎, true) ∈ ℬ[[𝑏]] ∧ (𝜎, 𝜎′) ∈ 𝒞[[𝑐]] ∧ (𝜎′, 𝜎′′) ∈ 𝑓 }

By the Kleene fixpoint theorem we have that fix(𝐹) =
∪

𝑖 𝐹
𝑖(∅). It is straightforward to show by

induction that since the guard is false, for all 𝑖 we have 𝐹 𝑖(∅) = {(𝜎, 𝜎)}. It follows that fix(𝐹) =
{(𝜎, 𝜎)}, which is just 𝒞[[skip]].

As an exercise, calcuate 𝒞[[while true do skip]] using the same technique.

2

	Kleene's Fixpoint Theorem
	Reasoning

