CS 4110 — Programming Languages and Logics
Lecture #9: Denotational Semantics

We have now seen two operational models for programming languages: small-step and large-
step. In this lecture, we consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical
function that expresses what the program computes. We can think of an IMP program c as a
function from stores to stores: given an an initial store, the program produces a final store. For
example, the program foo := bar + 1 can be thought of as a function that when given an input store
o, produces a final store ¢’ that is identical to ¢ except that it maps foo to the integer o(bar) + 1;
thatis, 0’ = o[foo — o(bar) + 1]. We will model programs as functions from input stores to output
stores. As opposed to operational models, which tell us how programs execute, the denotational
model shows us what programs compute.

1 A Denotational Semantics for IMP

For each program c, we write C[[c]| for the denotation of c, that is, the mathematical function that c
represents:
Cllc]l : Store — Store.

Note that C[[c]] is actually a partial function (as opposed to a total function), both because the store
may not be defined on the free variables of the program and because program may not terminate
for certain input stores. The function C[[c]] is not defined for non-terminating programs as they
have no corresponding output stores.

We will write C[[c]|lo for the result of applying the function C[[c] to the store ¢. That is, if f is
the function that C[[c]] denotes, then we write C[[c]lc to mean the same thing as f(0).

We must also model expressions as functions, this time from stores to the values they represent.
We will write A a]] for the denotation of arithmetic expression a, and B[[b]| for the denotation of
boolean expression b.

Alla]] : Store — Int
B[[b] : Store — {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
describe (partial) functions using sets of pairs. More precisely, we will represent a partial map
f:A—Basasetofpairs F = {(a,b) | a € Aand b = f(a) € B} such that, for each a € A, there is
at most one pair of the form (a,_) in the set. Hence (a, b) € F is the same as b = f(a).



We can now define denotations for IMP. We start with the denotations of expressions:

Aln]l ={(o,n)}
Allx]l = {(o,0(x))}
Allar + a2l ={(o,n) | (o,n1) € Alla1]] A (0, n2) € Allaz]]l An = ny + na}

Bl true]] = {(o, true)}
Bl false]] = {(o, false)}
Blar < az]l ={(o, true) | (o,n1) € Alla1]l A (6, n2) € Allaz]] Any < na} U
{(o,false) | (o,n1) € Allai]] A (0,n2) € Allaz]] A ny > ny}

The denotations for commands are as follows:

Cliskip] = {(0, 0)}
Cllx :=a]l ={(0,0[x — n])| (0,n) € Al a]l}
Cller;c2]l = {(o,0") | 30”. ((0,0”) € Clleall A (67, 0) € Cllea]D)}

Note that C[[c1; c2]] = C[lc2]l o C[[c1]], where o is the composition of relations, defined as follows: if
Ry € AXBand Ry C BXC then RyoR; C AXCisRyoRy ={(a,c)|3b € B.(a,b) € RiA(b,c) € Ra}.)
If C[lc1]] and C[[c2] are total functions, then o is function composition.

C[if b then ¢y else c3]] = {(0,0”) | (0, true) € B[[b]| A (0,0") € C[[c1 ]} U
{(c,0")| (0, false) € B[[b]| A (0,0") € Cllc2]1}
C|[while b do c]| = {(0, 0) | (0, false) € B[[b]]} U
{(c,0") | (0,true) € B[[b]] A Jc”. ((6,0”) € Cllc]| A (6”,0") € C[[while b do c]))}

But now we have a problem: the last “definition” is not really a definition because it expresses
C[[while b do c]] in terms of itself! This is not a definition but a recursive equation. What we want
is the solution to this equation.

2 Fixed Points

We gave a recursive equation that the function C[[while b do c]| must satisfy. To understand some
of the issues involved, let’s consider a simpler example. Consider the following equation for a

function f : N — N.
0 ifx=0
= 1
f@®) {f(x —1)+2x—1 otherwise @)

This is not a definition for f, but rather an equation that we want f to satisfy. What function, or
functions, satisfy this equation for f? The only solution to this equation is the function f(x) = x2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions g :
N — N that satisfy the recursive equation g(x) = g(x) + 1), or multiple solutions (e.g., find two
functions ¢ : R — R that satisfy g(x) = 4 x g(5)).



We can compute solutions to such equations by building successive approximations. Each ap-
proximation is closer and closer to the solution. To solve the recursive equation for f, we start with
the partial function fy = 0 (i.e., fy is the empty relation; it is a partial function with the empty set
for it’s domain). We compute successive approximations using the recursive equation.

fo=0
ﬁz{o ifx=0

fo(x =1)+2x —1 otherwise

={(0,0)}
J _{0 ifx=0
=

filx =1)+2x -1 otherwise

={(0,0),(1,1)}
; {o ifx =0
=

fa(x —1)+2x —1 otherwise

={(0,0),(1,1),(2,4)}

This sequence of successive approximations f; gradually builds the function f(x) = x2.
We can model this process of successive approximations using a higher-order function F that
takes one approximation fi and returns the next approximation fi1:

F:IN—=N)— (N—=N)
where

(F(N)) = {0 N
f(x=1)+2x -1 otherwise

A solution to the recursive equation 1 is a function f such that f = F(f). In general, given a
function F : A — A, we have that a € A is a fixed point of F if F(a) = a. We also write a = fiz(F) to
indicate that a is a least fixed point of F.

So the solution to the recursive equation 1 is a fixed-point of the higher-order function F. We
can compute this fixed point iteratively, starting with f, = 0 and at each iteration computing fi+1 =
F(fr). The fixed point is the limit of this process:

f = fix(F)
:f0Uf1 Ungng...
=QUF@)UF(F@)UFFF®@®)U...

= JF®

i>0



3 Denotation for Loops

We can now write the correct denotation case for while loops as the fixed point of a higher-order
function:

C [[while b do c]| = fix(F)
where F(f) = {(0,0) | (o, false) € B[b]]} U
{(g,0")| (0, true) € B[[b]] A Ja”. (5,0”) e Cllc]| A (¢”,0") € f}



	A Denotational Semantics for IMP
	Fixed Points
	Denotation for Loops

