
CS 4110 – Programming Languages and Logics
Lecture #9: Denotational Semantics

We have now seen two operational models for programming languages: small-step and large-
step. In this lecture, we consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical
function that expresses what the program computes. We can think of an IMP program 𝑐 as a
function from stores to stores: given an an initial store, the program produces a final store. For
example, the program foo := bar+ 1 can be thought of as a function that when given an input store
𝜎, produces a final store 𝜎′ that is identical to 𝜎 except that it maps foo to the integer 𝜎(bar) + 1;
that is, 𝜎′ = 𝜎[foo ↦→ 𝜎(bar) + 1]. We will model programs as functions from input stores to output
stores. As opposed to operational models, which tell us how programs execute, the denotational
model shows us what programs compute.

1 A Denotational Semantics for IMP

For each program 𝑐, we write 𝒞[[𝑐]] for the denotation of 𝑐, that is, the mathematical function that 𝑐
represents:

𝒞[[𝑐]] : Store ⇀ Store.

Note that 𝒞[[𝑐]] is actually a partial function (as opposed to a total function), both because the store
may not be defined on the free variables of the program and because program may not terminate
for certain input stores. The function 𝒞[[𝑐]] is not defined for non-terminating programs as they
have no corresponding output stores.

We will write 𝒞[[𝑐]]𝜎 for the result of applying the function 𝒞[[𝑐]] to the store 𝜎. That is, if 𝑓 is
the function that 𝒞[[𝑐]] denotes, then we write 𝒞[[𝑐]]𝜎 to mean the same thing as 𝑓 (𝜎).

Wemust alsomodel expressions as functions, this time from stores to the values they represent.
We will write 𝒜[[𝑎]] for the denotation of arithmetic expression 𝑎, and ℬ[[𝑏]] for the denotation of
boolean expression 𝑏.

𝒜[[𝑎]] : Store ⇀ Int
ℬ[[𝑏]] : Store ⇀ {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
describe (partial) functions using sets of pairs. More precisely, we will represent a partial map
𝑓 : 𝐴 ⇀ 𝐵 as a set of pairs 𝐹 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 and 𝑏 = 𝑓 (𝑎) ∈ 𝐵} such that, for each 𝑎 ∈ 𝐴, there is
at most one pair of the form (𝑎, _) in the set. Hence (𝑎, 𝑏) ∈ 𝐹 is the same as 𝑏 = 𝑓 (𝑎).

1



We can now define denotations for IMP. We start with the denotations of expressions:

𝒜[[𝑛]] = {(𝜎, 𝑛)}
𝒜[[𝑥]] = {(𝜎, 𝜎(𝑥))}

𝒜[[𝑎1 + 𝑎2]] = {(𝜎, 𝑛) | (𝜎, 𝑛1) ∈ 𝒜[[𝑎1]] ∧ (𝜎, 𝑛2) ∈ 𝒜[[𝑎2]] ∧ 𝑛 = 𝑛1 + 𝑛2}

ℬ[[true]] = {(𝜎, true)}
ℬ[[false]] = {(𝜎, false)}

ℬ[[𝑎1 < 𝑎2]] = {(𝜎, true) | (𝜎, 𝑛1) ∈ 𝒜[[𝑎1]] ∧ (𝜎, 𝑛2) ∈ 𝒜[[𝑎2]] ∧ 𝑛1 < 𝑛2} ∪
{(𝜎, false) | (𝜎, 𝑛1) ∈ 𝒜[[𝑎1]] ∧ (𝜎, 𝑛2) ∈ 𝒜[[𝑎2]] ∧ 𝑛1 ≥ 𝑛2}

The denotations for commands are as follows:

𝒞[[skip]] = {(𝜎, 𝜎)}
𝒞[[𝑥 := 𝑎]] = {(𝜎, 𝜎[𝑥 ↦→ 𝑛]) | (𝜎, 𝑛) ∈ 𝒜[[𝑎]]}
𝒞[[𝑐1; 𝑐2]] = {(𝜎, 𝜎′) | ∃𝜎′′. ((𝜎, 𝜎′′) ∈ 𝒞[[𝑐1]] ∧ (𝜎′′, 𝜎′) ∈ 𝒞[[𝑐2]])}

Note that 𝒞[[𝑐1; 𝑐2]] = 𝒞[[𝑐2]] ◦𝒞[[𝑐1]], where ◦ is the composition of relations, defined as follows: if
𝑅1 ⊆ 𝐴×𝐵 and𝑅2 ⊆ 𝐵×𝐶 then 𝑅2◦𝑅1 ⊆ 𝐴×𝐶 is𝑅2◦𝑅1 = {(𝑎, 𝑐) | ∃𝑏 ∈ 𝐵. (𝑎, 𝑏) ∈ 𝑅1∧(𝑏, 𝑐) ∈ 𝑅2}.)
If 𝒞[[𝑐1]] and 𝒞[[𝑐2]] are total functions, then ◦ is function composition.

𝒞[[if 𝑏 then 𝑐1 else 𝑐2]] = {(𝜎, 𝜎′) | (𝜎, true) ∈ ℬ[[𝑏]] ∧ (𝜎, 𝜎′) ∈ 𝒞[[𝑐1]]} ∪
{(𝜎, 𝜎′) | (𝜎, false) ∈ ℬ[[𝑏]] ∧ (𝜎, 𝜎′) ∈ 𝒞[[𝑐2]]}

𝒞[[while 𝑏 do 𝑐]] = {(𝜎, 𝜎) | (𝜎, false) ∈ ℬ[[𝑏]]} ∪
{(𝜎, 𝜎′) | (𝜎, true) ∈ ℬ[[𝑏]] ∧ ∃𝜎′′. ((𝜎, 𝜎′′) ∈ 𝒞[[𝑐]] ∧ (𝜎′′, 𝜎′) ∈ 𝒞[[while 𝑏 do 𝑐]])}

But now we have a problem: the last “definition” is not really a definition because it expresses
𝒞[[while 𝑏 do 𝑐]] in terms of itself! This is not a definition but a recursive equation. What we want
is the solution to this equation.

2 Fixed Points

We gave a recursive equation that the function 𝒞[[while 𝑏 do 𝑐]] must satisfy. To understand some
of the issues involved, let’s consider a simpler example. Consider the following equation for a
function 𝑓 : N → N.

𝑓 (𝑥) =
{

0 if 𝑥 = 0
𝑓 (𝑥 − 1) + 2𝑥 − 1 otherwise

(1)

This is not a definition for 𝑓 , but rather an equation that we want 𝑓 to satisfy. What function, or
functions, satisfy this equation for 𝑓 ? The only solution to this equation is the function 𝑓 (𝑥) = 𝑥2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions 𝑔 :
N → N that satisfy the recursive equation 𝑔(𝑥) = 𝑔(𝑥) + 1), or multiple solutions (e.g., find two
functions 𝑔 : R → R that satisfy 𝑔(𝑥) = 4 × 𝑔( 𝑥2 )).

2



We can compute solutions to such equations by building successive approximations. Each ap-
proximation is closer and closer to the solution. To solve the recursive equation for 𝑓 , we start with
the partial function 𝑓0 = ∅ (i.e., 𝑓0 is the empty relation; it is a partial function with the empty set
for it’s domain). We compute successive approximations using the recursive equation.

𝑓0 = ∅

𝑓1 =

{
0 if 𝑥 = 0
𝑓0(𝑥 − 1) + 2𝑥 − 1 otherwise

= {(0, 0)}

𝑓2 =

{
0 if 𝑥 = 0
𝑓1(𝑥 − 1) + 2𝑥 − 1 otherwise

= {(0, 0), (1, 1)}

𝑓3 =

{
0 if 𝑥 = 0
𝑓2(𝑥 − 1) + 2𝑥 − 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

This sequence of successive approximations 𝑓𝑖 gradually builds the function 𝑓 (𝑥) = 𝑥2.
We can model this process of successive approximations using a higher-order function 𝐹 that

takes one approximation 𝑓𝑘 and returns the next approximation 𝑓𝑘+1:

𝐹 : (N ⇀ N) → (N ⇀ N)

where

(𝐹( 𝑓 ))(𝑥) =
{

0 if 𝑥 = 0
𝑓 (𝑥 − 1) + 2𝑥 − 1 otherwise

A solution to the recursive equation 1 is a function 𝑓 such that 𝑓 = 𝐹( 𝑓 ). In general, given a
function 𝐹 : 𝐴 → 𝐴, we have that 𝑎 ∈ 𝐴 is a fixed point of 𝐹 if 𝐹(𝑎) = 𝑎. We also write 𝑎 = fix(𝐹) to
indicate that 𝑎 is a least fixed point of 𝐹.

So the solution to the recursive equation 1 is a fixed-point of the higher-order function 𝐹. We
can compute this fixed point iteratively, starting with 𝑓0 = ∅ and at each iteration computing 𝑓𝑘+1 =
𝐹( 𝑓𝑘). The fixed point is the limit of this process:

𝑓 = fix(𝐹)
= 𝑓0 ∪ 𝑓1 ∪ 𝑓2 ∪ 𝑓3 ∪ . . .

= ∅ ∪ 𝐹(∅) ∪ 𝐹(𝐹(∅)) ∪ 𝐹(𝐹(𝐹(∅))) ∪ . . .

=
∪
𝑖≥0

𝐹 𝑖(∅)

3



3 Denotation for Loops

We can now write the correct denotation case for while loops as the fixed point of a higher-order
function:

𝒞[[while 𝑏 do 𝑐]] = fix(𝐹)
where 𝐹( 𝑓 ) = {(𝜎, 𝜎) | (𝜎, false) ∈ ℬ[[𝑏]]} ∪

{(𝜎, 𝜎′) | (𝜎, true) ∈ ℬ[[𝑏]] ∧ ∃𝜎′′. (𝜎, 𝜎′′) ∈ 𝒞[[𝑐]] ∧ (𝜎′′, 𝜎′) ∈ 𝑓 }

4


	A Denotational Semantics for IMP
	Fixed Points
	Denotation for Loops

