CS 4110 — Programming Languages and Logics
Lecture #7: IMP Properties

1 Equivalence of Semantics

The small-step and large-step semantics are equivalent as captured by the following theorem.

Theorem. For all commands ¢ and stores o and o’ we have
(a,c) —>*(a’, skip) if and only if (o, c) | 0.

The proof is left as an exercise...

2 Non-Termination

For a given command c and initial state o, the execution of the command may terminate with some
final store ¢’, or it may diverge and never yield a final state. For example, the command

while true do foo := foo + 1

always diverges while
while0 <idoi:=i+1

diverges if and only if the value of variable i in the initial state is positive.
If (0, c) is a diverging configuration then there is no state o such that

(o,c) J o or (0,c) =*(0’, skip).
However, in small-step semantics, diverging computations generate an infinite sequence:
(0,¢) = (o1, 1) = (02,02) = ...

Hence, small-step semantics allow us to state and prove properties about programs that may di-
verge. Later in the course, we will specify and prove properties that are of interest in potentially
diverging computations.

3 Determinism

The semantics of IMP (both small-step and large-step) are deterministic. For example, each IMP
command c and each initial store o evaluates to at most one final store.

Theorem. For all commands c and stores 0,01, and o2, if (o,c) || 01 and (o, c) || o2 then o1 = 02.



To prove this theorem, we need an induction. But structural induction on the command ¢ will
not work. (Why? Which case breaks?) Instead, we need to perform induction on the derivation of
(0,c) | 01. We first introduce some useful notation.

Let O be a derivation. We write D I+ y if D is a derivation of y, that is, if the conclusion of D
is y. For example, if D is the following derivation

(0,6) | 6 (0,717
(0,6%x7) || 42
(0,i:=6xT7) | ofi — 42]

then we have D I (c,i:=6 X 7) || o[i — 42].

Let D and D’ be derivations. We say that D’ is an immediate subderivation of D if D’ is a
derivation of one of the premises used in the final rule in the derivation . For example, the
derivation

(0,6) J 6 (o, 7Y 7
(0,6x7) | 42

is an immediate subderivation of

(0,6) | 6 (0,717
(0,6 x7) | 42
(0,i:=6xT7) | ofi — 42]

In a proof by induction on derivations, we assume that the property P being proved holds for all
immediate subderivations, and we show that it holds of the conclusion.

Proof. As{o,c) || 01, there is a derivation D, such that D; I (o, c) || 01. Similarly, as (o, c) || o2,
there is a derivation D such that Ds I (o, c) || o2.

We proceed by induction on the derivation D; I (o,c) || 01. We assume that the induction
hypothesis holds for immediate subderivations of ;. In this case, the induction hypothesis P is:

P(D) =Vc € Com. Yo,0’,0"” € Store, if D I+ (0,c) || 0’ and (o, c) || ¢” then ¢’ = ¢”.
We analyze the possible cases for the last rule used in D;.

Case Ski1pr: In this case

Skip—————
D, = (o,skip) || o
and we have c = skip and 01 = 0. Since the rule Skip is the only rule that has the command
skip in its conclusion, the last rule used in D, must also be Skip, and so we have o5 = ¢ and
the result holds.



Case AssGN: In this case

(o,a) I n
ASSGN
1= <(7/X5:a>“0[x'_>n] ’
and we have ¢ = x := a and 01 = o[x — n]. The last rule used in D, must also be AssGN,

and so we have o3 = o[x — 1] and the result holds.!
Case SEQ: In this case

SEQ (o,c1) | 0] (o7,c2) | o1
D, = (o,c1;02) | o1 ,

and we have ¢ = c¢1; co. The last rule used in D> must also be SEQ, and so we have

SEQ (o,c1) | o} (0, c2) | 02
Dy = (o,c15¢9) | 02

By the inductive hypothesis applied to the derivation (o, c1) || 07 , we have o] = o). By

another application of the inductive hypothesis to (o7, c2) | 01 , we have 01 = 02 and the
result holds.
Case Ir-T: Here we have

5T (0,b) | true (0,c1) | o1
Dy = (o,if b then ¢ else ¢3) || 01 ,

and we have ¢ = if b then ¢y else ¢5. The last rule used in 99 must also be Ir-T and so we
have

6T (0,b) || true (0,c1) | 02
Dy = (o,if b then ¢y else ¢5) || 09

The result holds by the inductive hypothesis applied to the derivation (o,c1) || 01
Case IF-F: Similar to the case for Ir-T.
Case WHILE-F: Straightforward, similar to the case for Skip.

IStrictly speaking, we also need to argue that the evaluation of a is deterministic. In this proof we will tacitly assume
deterministic evaluation of arithmetic and boolean expressions.



Case WHILE-T: Here we have

WHILE-T <01 b> 'U' true <-O_/ Cl> U' Ui <O-1/ C> U' 01
D, = (o,while b do cy) || 01 ,

and we have ¢ = while b do ¢;. The last rule used in D5 must also be WHILE-T, and so we
have

Wemer (0D Utrie (o,e)Uoy (o0 Loy
Dy = (o,while b do cy) || 09

By the inductive hypothesis applied to the derivation (o,c1) || 0] , we have 0] = /. By

another application of the inductive hypothesis, to the derivation (o/,c) || 01 , we have
01 = 09 and the result holds.

Note that even though ¢ = while b do c; appears in the derivation of (o, while b do ¢;) | 01,
we do not run in to problems, as the induction is over the derivation, not over the structure of
the command.
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