
CS 4110 – Programming Languages and Logics
Lecture #7: IMP Properties

1 Equivalence of Semantics

The small-step and large-step semantics are equivalent as captured by the following theorem.

Theorem. For all commands 𝑐 and stores 𝜎 and 𝜎′ we have

⟨𝜎, 𝑐⟩ →∗⟨𝜎′, skip⟩ if and only if ⟨𝜎, 𝑐⟩ ⇓ 𝜎′.

The proof is left as an exercise...

2 Non-Termination

For a given command 𝑐 and initial state 𝜎, the execution of the command may terminate with some
final store 𝜎′, or it may diverge and never yield a final state. For example, the command

while true do foo := foo + 1

always diverges while
while 0 < i do i := i + 1

diverges if and only if the value of variable i in the initial state is positive.
If ⟨𝜎, 𝑐⟩ is a diverging configuration then there is no state 𝜎 such that

⟨𝜎, 𝑐⟩ ⇓ 𝜎′ or ⟨𝜎, 𝑐⟩ →∗⟨𝜎′, skip⟩.
However, in small-step semantics, diverging computations generate an infinite sequence:

⟨𝜎, 𝑐⟩ → ⟨𝜎1 , 𝑐1⟩ → ⟨𝜎2 , 𝑐2⟩ → . . .

Hence, small-step semantics allow us to state and prove properties about programs that may di-
verge. Later in the course, we will specify and prove properties that are of interest in potentially
diverging computations.

3 Determinism

The semantics of IMP (both small-step and large-step) are deterministic. For example, each IMP
command 𝑐 and each initial store 𝜎 evaluates to at most one final store.

Theorem. For all commands 𝑐 and stores 𝜎, 𝜎1 , and 𝜎2, if ⟨𝜎, 𝑐⟩ ⇓ 𝜎1 and ⟨𝜎, 𝑐⟩ ⇓ 𝜎2 then 𝜎1 = 𝜎2.

1



To prove this theorem, we need an induction. But structural induction on the command 𝑐 will
not work. (Why? Which case breaks?) Instead, we need to perform induction on the derivation of
⟨𝜎, 𝑐⟩ ⇓ 𝜎1. We first introduce some useful notation.

Let 𝒟 be a derivation. We write 𝒟 ⊩ 𝑦 if 𝒟 is a derivation of 𝑦, that is, if the conclusion of 𝒟
is 𝑦. For example, if 𝒟 is the following derivation

⟨𝜎, 6⟩ ⇓ 6 ⟨𝜎, 7⟩ ⇓ 7
⟨𝜎, 6 × 7⟩ ⇓ 42

⟨𝜎, i := 6 × 7⟩ ⇓ 𝜎[i ↦→ 42]
then we have 𝒟 ⊩ ⟨𝜎, i := 6 × 7⟩ ⇓ 𝜎[i ↦→ 42].

Let 𝒟 and 𝒟′ be derivations. We say that 𝒟′ is an immediate subderivation of 𝒟 if 𝒟′ is a
derivation of one of the premises used in the final rule in the derivation 𝒟 . For example, the
derivation

⟨𝜎, 6⟩ ⇓ 6 ⟨𝜎, 7⟩ ⇓ 7
⟨𝜎, 6 × 7⟩ ⇓ 42

is an immediate subderivation of

⟨𝜎, 6⟩ ⇓ 6 ⟨𝜎, 7⟩ ⇓ 7
⟨𝜎, 6 × 7⟩ ⇓ 42

⟨𝜎, i := 6 × 7⟩ ⇓ 𝜎[i ↦→ 42]
In a proof by induction on derivations, we assume that the property 𝑃 being proved holds for all
immediate subderivations, and we show that it holds of the conclusion.

Proof. As ⟨𝜎, 𝑐⟩ ⇓ 𝜎1, there is a derivation 𝒟1 such that 𝒟1 ⊩ ⟨𝜎, 𝑐⟩ ⇓ 𝜎1. Similarly, as ⟨𝜎, 𝑐⟩ ⇓ 𝜎2,
there is a derivation 𝒟2 such that 𝒟2 ⊩ ⟨𝜎, 𝑐⟩ ⇓ 𝜎2.

We proceed by induction on the derivation 𝒟1 ⊩ ⟨𝜎, 𝑐⟩ ⇓ 𝜎1. We assume that the induction
hypothesis holds for immediate subderivations of 𝒟1. In this case, the induction hypothesis 𝑃 is:

𝑃(𝒟) = ∀𝑐 ∈ Com. ∀𝜎, 𝜎′, 𝜎′′ ∈ Store, if 𝒟 ⊩ ⟨𝜎, 𝑐⟩ ⇓ 𝜎′ and ⟨𝜎, 𝑐⟩ ⇓ 𝜎′′ then 𝜎′ = 𝜎′′.

We analyze the possible cases for the last rule used in 𝒟1.

Case SKIP: In this case

𝒟1 =
SKIP

...
⟨𝜎, skip⟩ ⇓ 𝜎

and we have 𝑐 = skip and 𝜎1 = 𝜎. Since the rule SKIP is the only rule that has the command
skip in its conclusion, the last rule used in 𝒟2 must also be SKIP, and so we have 𝜎2 = 𝜎 and
the result holds.

2



Case ASSGN: In this case

𝒟1 =
ASSGN

...
⟨𝜎, 𝑎⟩ ⇓ 𝑛

⟨𝜎, 𝑥 := 𝑎⟩ ⇓ 𝜎[𝑥 ↦→ 𝑛] ,

and we have 𝑐 = 𝑥 := 𝑎 and 𝜎1 = 𝜎[𝑥 ↦→ 𝑛]. The last rule used in 𝒟2 must also be ASSGN,
and so we have 𝜎2 = 𝜎[𝑥 ↦→ 𝑛] and the result holds.1

Case SEQ: In this case

𝒟1 =
SEQ

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎′

1

...
⟨𝜎′

1 , 𝑐2⟩ ⇓ 𝜎1

⟨𝜎, 𝑐1; 𝑐2⟩ ⇓ 𝜎1 ,

and we have 𝑐 = 𝑐1; 𝑐2. The last rule used in 𝒟2 must also be SEQ, and so we have

𝒟2 =
SEQ

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎′

2

...
⟨𝜎′

2 , 𝑐2⟩ ⇓ 𝜎2

⟨𝜎, 𝑐1; 𝑐2⟩ ⇓ 𝜎2 .

By the inductive hypothesis applied to the derivation

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎′

1 , we have 𝜎′
1 = 𝜎′

2. By

another application of the inductive hypothesis to

...
⟨𝜎′

1 , 𝑐2⟩ ⇓ 𝜎1 , we have 𝜎1 = 𝜎2 and the
result holds.

Case IF-T: Here we have

𝒟1 =
IF-T

...
⟨𝜎, 𝑏⟩ ⇓ true

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎1

⟨𝜎, if 𝑏 then 𝑐1 else 𝑐2⟩ ⇓ 𝜎1 ,

and we have 𝑐 = if 𝑏 then 𝑐1 else 𝑐2. The last rule used in 𝒟2 must also be IF-T and so we
have

𝒟2 =
IF-T

...
⟨𝜎, 𝑏⟩ ⇓ true

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎2

⟨𝜎, if 𝑏 then 𝑐1 else 𝑐2⟩ ⇓ 𝜎2 .

The result holds by the inductive hypothesis applied to the derivation

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎1 .

Case IF-F: Similar to the case for IF-T.
Case WHILE-F: Straightforward, similar to the case for SKIP.

1Strictly speaking, we also need to argue that the evaluation of 𝑎 is deterministic. In this proof we will tacitly assume
deterministic evaluation of arithmetic and boolean expressions.

3



Case WHILE-T: Here we have

𝒟1 =
WHILE-T

...
⟨𝜎, 𝑏⟩ ⇓ true

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎′

1

...
⟨𝜎′

1 , 𝑐⟩ ⇓ 𝜎1

⟨𝜎,while 𝑏 do 𝑐1⟩ ⇓ 𝜎1 ,

and we have 𝑐 = while 𝑏 do 𝑐1. The last rule used in 𝒟2 must also be WHILE-T, and so we
have

𝒟2 =
WHILE-T

...
⟨𝜎, 𝑏⟩ ⇓ true

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎′

2

...
⟨𝜎′

2 , 𝑐⟩ ⇓ 𝜎2

⟨𝜎,while 𝑏 do 𝑐1⟩ ⇓ 𝜎2 .

By the inductive hypothesis applied to the derivation

...
⟨𝜎, 𝑐1⟩ ⇓ 𝜎′

1 , we have 𝜎′
1 = 𝜎′

2. By

another application of the inductive hypothesis, to the derivation

...
⟨𝜎′

1 , 𝑐⟩ ⇓ 𝜎1 , we have
𝜎1 = 𝜎2 and the result holds.
Note that even though 𝑐 = while 𝑏 do 𝑐1 appears in the derivation of ⟨𝜎,while 𝑏 do 𝑐1⟩ ⇓ 𝜎1,
we do not run in to problems, as the induction is over the derivation, not over the structure of
the command.

4


	Equivalence of Semantics
	Non-Termination
	Determinism

