
CS 4110 – Programming Languages and Logics
Lecture #6: The IMP Language

1 A simple imperative language

We will now consider a more realistic programming language, one where we can assign values
to variables and execute control constructs such as if and while. The syntax for this imperative
language, called IMP, is as follows:

arithmetic expressions 𝑎 ∈ Aexp 𝑎 ::= 𝑥 | 𝑛 | 𝑎1 + 𝑎2 | 𝑎1 × 𝑎2

Boolean expressions 𝑏 ∈ Bexp 𝑏 ::= true | false | 𝑎1 < 𝑎2

commands 𝑐 ∈ Com 𝑐 ::= skip | 𝑥 := 𝑎 | 𝑐1; 𝑐2 | if 𝑏 then 𝑐1 else 𝑐2 | while 𝑏 do 𝑐

1.1 Small-step operational semantics

We’ll first give a small-step operational semantics for IMP. The configurations in this language are
of the form ⟨𝜎, 𝑐⟩, ⟨𝜎, 𝑏⟩, and ⟨𝜎, 𝑎⟩, where 𝜎 is a store. The final configurations are of the form
⟨𝜎, skip⟩ for commands, ⟨𝜎, true⟩ and ⟨𝜎, false⟩ for Boolean expressions, and ⟨𝜎, 𝑛⟩ for arithmetic
expressions. There are three different small-step operational semantics relations: one each of the
syntactic categories.

→Com ⊆ (Store × Com) × (Store × Com)
→Bexp ⊆ (Store × Bexp) × (Store × Bexp)
→Aexp ⊆ (Store × Aexp) × (Store × Aexp)

For brevity, we will overload the symbol → and use it to refer to all of these relations. Which
relation is being used will be clear from context. The evaluation rules for arithmetic and Boolean
expressions are similar to the ones we’ve seen before. However, note that since the arithmetic
expressions no longer contain assignment, arithmetic and Boolean expressions can not update the
store.

Arithmetic expressions

𝑛 = 𝜎(𝑥)
⟨𝜎, 𝑥⟩ → ⟨𝜎, 𝑛⟩

⟨𝜎, 𝑎1⟩ → ⟨𝜎, 𝑎′1⟩
⟨𝜎, 𝑎1 + 𝑎2⟩ → ⟨𝜎, 𝑎′1 + 𝑎2⟩

⟨𝜎, 𝑎2⟩ → ⟨𝜎, 𝑎′2⟩
⟨𝜎, 𝑛 + 𝑎2⟩ → ⟨𝜎, 𝑛 + 𝑎′2⟩

𝑝 = 𝑛 + 𝑚
⟨𝜎, 𝑛 + 𝑚⟩ → ⟨𝜎, 𝑝⟩

⟨𝜎, 𝑎1⟩ → ⟨𝜎, 𝑎′1⟩
⟨𝜎, 𝑎1 × 𝑎2⟩ → ⟨𝜎, 𝑎′1 × 𝑎2⟩

⟨𝜎, 𝑎2⟩ → ⟨𝜎, 𝑎′2⟩
⟨𝜎, 𝑛 × 𝑎2⟩ → ⟨𝜎, 𝑛 × 𝑎′2⟩

𝑝 = 𝑛 × 𝑚
⟨𝜎, 𝑛 × 𝑚⟩ → ⟨𝜎, 𝑝⟩

Boolean expressions

1

⟨𝜎, 𝑎1⟩ → ⟨𝜎, 𝑎′1⟩
⟨𝜎, 𝑎1 < 𝑎2⟩ → ⟨𝜎, 𝑎′1 < 𝑎2⟩

⟨𝜎, 𝑎2⟩ → ⟨𝜎, 𝑎′2⟩
⟨𝜎, 𝑛 < 𝑎2⟩ → ⟨𝜎, 𝑛 < 𝑎′2⟩

𝑛 < 𝑚
⟨𝜎, 𝑛 < 𝑚⟩ → ⟨𝜎, true⟩

𝑛 ≥ 𝑚
⟨𝜎, 𝑛 < 𝑚⟩ → ⟨𝜎, false⟩

Commands

⟨𝜎, 𝑎⟩ → ⟨𝜎, 𝑎′⟩
⟨𝜎, 𝑥 := 𝑎⟩ → ⟨𝜎, 𝑥 := 𝑎′⟩ ⟨𝜎, 𝑥 := 𝑛⟩ → ⟨𝜎[𝑥 ↦→ 𝑛], skip⟩

⟨𝜎, 𝑐1⟩ → ⟨𝜎′, 𝑐′1⟩
⟨𝜎, 𝑐1; 𝑐2⟩ → ⟨𝜎′, 𝑐′1; 𝑐2⟩ ⟨𝜎, skip; 𝑐2⟩ → ⟨𝜎, 𝑐2⟩

For if commands, we reduce the test until we get true or false and then we execute the appropriate
branch:

⟨𝜎, 𝑏⟩ → ⟨𝜎, 𝑏′⟩
⟨𝜎, if 𝑏 then 𝑐1 else 𝑐2⟩ → ⟨𝜎, if 𝑏′ then 𝑐1 else 𝑐2⟩

⟨𝜎, if true then 𝑐1 else 𝑐2⟩ → ⟨𝜎, 𝑐1⟩ ⟨𝜎, if false then 𝑐1 else 𝑐2⟩ → ⟨𝜎, 𝑐2⟩
For while loops, the above strategy doesn’t work (why?). Instead, we use the following rule, which
can be thought of as “unrolling” the loop, one iteration at a time.

⟨𝜎,while 𝑏 do 𝑐⟩ → ⟨𝜎, if 𝑏 then (𝑐; while 𝑏 do 𝑐) else skip⟩
We can now take a concrete program and see how it executes under the above rules. Consider we
execute the program

foo := 3; while foo < 4 do foo := foo + 5

2

The execution works as follows:

⟨𝜎, foo := 3; while foo < 4 do foo := foo + 5⟩
→ ⟨𝜎′, skip; while foo < 4 do foo := foo + 5⟩ where 𝜎′ = 𝜎[foo ↦→ 3]
→ ⟨𝜎′,while foo < 4 do foo := foo + 5⟩
→ ⟨𝜎′, if foo < 4 then (foo := foo + 5;𝑊) else skip⟩
→ ⟨𝜎′, if 3 < 4 then (foo := foo + 5;𝑊) else skip⟩
→ ⟨𝜎′, if true then (foo := foo + 5;𝑊) else skip⟩
→ ⟨𝜎′, foo := foo + 5; while foo < 4 do foo := foo + 5⟩
→ ⟨𝜎′, foo := 3 + 5; while foo < 4 do foo := foo + 5⟩
→ ⟨𝜎′, foo := 8; while foo < 4 do foo := foo + 5⟩
→ ⟨𝜎′′, skip; while foo < 4 do foo := foo + 5⟩ where 𝜎′′ = 𝜎′[foo ↦→ 8]
→ ⟨𝜎′′,while foo < 4 do foo := foo + 5⟩
→ ⟨𝜎′′, if foo < 4 then (foo := foo + 5;𝑊) else skip⟩
→ ⟨𝜎′′, if 8 < 4 then (foo := foo + 5;𝑊) else skip⟩
→ ⟨𝜎′′, if false then (foo := foo + 5;𝑊) else skip⟩
→ ⟨𝜎′′, skip⟩

where𝑊 is an abbreviation for the while loop while foo < 4 do foo := foo + 5.

2 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, Boolean expressions, and
commands. The relation for arithmetic expressions relates an arithmetic expression and store to
the integer value that the expression evaluates to. For Boolean expressions, the final value is in
Bool = {true, false}. For commands, the final value is a store.

⇓Aexp ⊆ (Aexp × Store) × Int
⇓Bexp ⊆ (Bexp × Store) × Bool
⇓Com ⊆ (Com × Store) × Store

Again, we overload the symbol ⇓ and use it for any of these three relations; which relation is in-
tended will be clear from context. We also use infix notation, for example writing ⟨𝜎, 𝑐⟩ ⇓ 𝜎′ if
(⟨𝜎, 𝑐⟩, 𝜎′) ∈ ⇓Com.

Arithmetic expressions.

⟨𝜎, 𝑛⟩ ⇓ 𝑛
𝜎(𝑥) = 𝑛
⟨𝜎, 𝑥⟩ ⇓ 𝑛

⟨𝜎, 𝑎1⟩ ⇓ 𝑛1 ⟨𝜎, 𝑎2⟩ ⇓ 𝑛2 𝑛 = 𝑛1 + 𝑛2

⟨𝜎, 𝑎1 + 𝑎2⟩ ⇓ 𝑛
⟨𝜎, 𝑎1⟩ ⇓ 𝑛1 ⟨𝜎, 𝑎2⟩ ⇓ 𝑛2 𝑛 = 𝑛1 × 𝑛2

⟨𝜎, 𝑎1 × 𝑎2⟩ ⇓ 𝑛

3

Boolean expressions.

⟨𝜎, true⟩ ⇓ true ⟨𝜎, false⟩ ⇓ false

⟨𝜎, 𝑎1⟩ ⇓ 𝑛1 ⟨𝜎, 𝑎2⟩ ⇓ 𝑛2 𝑛1 < 𝑛2

⟨𝜎, 𝑎1 < 𝑎2⟩ ⇓ true
⟨𝜎, 𝑎1⟩ ⇓ 𝑛1 ⟨𝜎, 𝑎2⟩ ⇓ 𝑛2 𝑛1 ≥ 𝑛2

⟨𝜎, 𝑎1 < 𝑎2⟩ ⇓ false

Commands.

SKIP ⟨𝜎, skip⟩ ⇓ 𝜎
ASSGN

⟨𝜎, 𝑎⟩ ⇓ 𝑛
⟨𝜎, 𝑥 := 𝑎⟩ ⇓ 𝜎[𝑥 ↦→ 𝑛] SEQ

⟨𝜎, 𝑐1⟩ ⇓ 𝜎′ ⟨𝜎′, 𝑐2⟩ ⇓ 𝜎′′

⟨𝜎, 𝑐1; 𝑐2⟩ ⇓ 𝜎′′

IF-T
⟨𝜎, 𝑏⟩ ⇓ true ⟨𝜎, 𝑐1⟩ ⇓ 𝜎′

⟨𝜎, if 𝑏 then 𝑐1 else 𝑐2⟩ ⇓ 𝜎′ IF-F
⟨𝜎, 𝑏⟩ ⇓ false ⟨𝜎, 𝑐2⟩ ⇓ 𝜎′

⟨𝜎, if 𝑏 then 𝑐1 else 𝑐2⟩ ⇓ 𝜎′

WHILE-F
⟨𝜎, 𝑏⟩ ⇓ false

⟨𝜎,while 𝑏 do 𝑐⟩ ⇓ 𝜎
WHILE-T

⟨𝜎, 𝑏⟩ ⇓ true ⟨𝜎, 𝑐⟩ ⇓ 𝜎′ ⟨𝜎′,while 𝑏 do 𝑐⟩ ⇓ 𝜎′′

⟨𝜎,while 𝑏 do 𝑐⟩ ⇓ 𝜎′′

It’s interesting to see that the rule for while loops does not rely on using an if command (as in the
case of small-step semantics). Why does this rule work?

2.1 Command equivalence

The small-step operational semantics suggests that the loop while 𝑏 do 𝑐 should be equivalent to
the command if 𝑏 then (𝑐; while 𝑏 do 𝑐) else skip. Can we show that this indeed the case that the
language is defined using the above large-step evaluation?

First, we need to to be more precise about what “equivalent commands” mean. Our formal
model allows us to define this concept using large-step evaluations as follows. (One can write a
similar definition using →∗ in small-step semantics.)

Definition (Equivalence of commands). Two commands 𝑐 and 𝑐′ are equivalent (written 𝑐 ∼ 𝑐′) if,
for any stores 𝜎 and 𝜎′, we have

⟨𝜎, 𝑐⟩ ⇓ 𝜎′ ⇐⇒ ⟨𝜎, 𝑐′⟩ ⇓ 𝜎′.

We can now state and prove the claim that while 𝑏 do 𝑐 and if 𝑏 then (𝑐; while 𝑏 do 𝑐) else skip
are equivalent.

Theorem. For all 𝑏 ∈ Bexp and 𝑐 ∈ Com we have

while 𝑏 do 𝑐 ∼ if 𝑏 then (𝑐; while 𝑏 do 𝑐) else skip.

Proof. Let𝑊 be an abbreviation for while 𝑏 do 𝑐. We want to show that for all stores 𝜎, 𝜎′, we have:

⟨𝜎,𝑊⟩ ⇓ 𝜎′ if and only if ⟨𝜎, if 𝑏 then (𝑐;𝑊) else skip⟩ ⇓ 𝜎′

For this, we must show that both directions (=⇒ and⇐=) hold. We’ll show only direction =⇒; the
other is similar.

4

Assume that 𝜎 and 𝜎′ are stores such that ⟨𝜎,𝑊⟩ ⇓ 𝜎′. It means that there is some derivation
that proves for this fact. Inspecting the evaluation rules, we see that there are two possible rules
whose conclusions match this fact: WHILE-F and WHILE-T. We analyze each of them in turn.

• WHILE-F. The derivation must look like the following.

WHILE-F

...1

⟨𝜎, 𝑏⟩ ⇓ false
⟨𝜎,𝑊⟩ ⇓ 𝜎

Here, we use
...1 to refer to the derivation of ⟨𝜎, 𝑏⟩ ⇓ false. Note that in this case, 𝜎′ = 𝜎.

We can use
...1 to derive a proof tree showing that the evaluation of if 𝑏 then (𝑐;𝑊) else skip

yields the same final state 𝜎:

IF-F

...1

⟨𝜎, 𝑏⟩ ⇓ false
SKIP ⟨𝜎, skip⟩ ⇓ 𝜎

⟨𝜎, if 𝑏 then (𝑐;𝑊) else skip⟩ ⇓ 𝜎

• WHILE-T. In this case, the derivation has the following form.

WHILE-T

...2

⟨𝜎, 𝑏⟩ ⇓ true

...3

⟨𝜎, 𝑐⟩ ⇓ 𝜎′′

...4

⟨𝜎′′,𝑊⟩ ⇓ 𝜎′

⟨𝜎,𝑊⟩ ⇓ 𝜎′

We can use subderivations
...2,

...3, and
...4 to show that the evaluation of if 𝑏 then (𝑐;𝑊) else skip

yields the same final state 𝜎.

IF-T

...2

⟨𝜎, 𝑏⟩ ⇓ true
SEQ

...3

⟨𝜎, 𝑐⟩ ⇓ 𝜎′′

...4

⟨𝜎′′,𝑊⟩ ⇓ 𝜎′

⟨𝜎, 𝑐;𝑊⟩ ⇓ 𝜎′

⟨𝜎, if 𝑏 then (𝑐;𝑊) else skip⟩ ⇓ 𝜎′

Hence, we showed that in each of the two possible cases, the command if 𝑏 then (𝑐;𝑊) else skip
evaluates to the same final state as the command𝑊 .

5

