
CS 4110 – Programming Languages and Logics
Lecture #3: Inductive definitions and proofs

In this lecture, we will use the semantics of our simple language of arithmetic expressions,

𝑒 ::= x | 𝑛 | 𝑒1 + 𝑒2 | 𝑒1 * 𝑒2 | 𝑥 := 𝑒1 ; 𝑒2 ,

to express useful program properties, and we will prove these properties by induction.

1 Program Properties

There are a number of interesting questions about a language one can ask: Is it deterministic?
Are there non-terminating programs? What sorts of errors can arise during evaluation? Having a
formal semantics allows us to express these properties precisely.

• Determinism: Evaluation is deterministic,

∀𝑒 ∈ Exp. ∀𝜎, 𝜎′, 𝜎′′ ∈ Store. ∀𝑒′, 𝑒′′ ∈ Exp.
if ⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩ and ⟨𝜎, 𝑒⟩ → ⟨𝜎′′, 𝑒′′⟩ then 𝑒′ = 𝑒′′ and 𝜎′ = 𝜎′′.

• Termination: Evaluation of every expression terminates,

∀𝑒 ∈ Exp. ∀𝜎 ∈ Store. ∃𝜎′ ∈ Store. ∃𝑒′ ∈ Exp. ⟨𝜎, 𝑒⟩ →∗ ⟨𝜎′, 𝑒′⟩ and ⟨𝜎′, 𝑒′⟩ ̸→,

where ⟨𝜎′, 𝑒′⟩ ̸→ is shorthand for ¬ (∃𝜎′′ ∈ Store. ∃𝑒′′ ∈ Exp. ⟨𝜎′, 𝑒′⟩ → ⟨𝜎′′, 𝑒′′⟩).
It is tempting to want the following soundness property,

• Soundness: Evaluation of every expression yields an integer,

∀𝑒 ∈ Exp. ∀𝜎 ∈ Store. ∃𝜎′ ∈ store. ∃𝑛′ ∈ Int. ⟨𝜎, 𝑒⟩ →∗ ⟨𝜎′, 𝑛′⟩,
but unfortunately it does not hold in our language! For example, consider the totally-undefined
function 𝜎 and the expression 𝑖 + 𝑗. The configuration ⟨𝜎, 𝑖 + 𝑗⟩ is stuck—it has nopossible transitions—
but 𝑖 + 𝑗 is not an integer. The problem is that 𝑖 + 𝑗 has free variables but 𝜎 does not containmappings
for those variables.

To fix this problem, we can restrict our attention to well-formed configurations ⟨𝜎, 𝑒⟩, where 𝜎 is
defined on (at least) the free variables in 𝑒. This makes sense as evaluation typically starts with a
closed expression. We can define the set of free variables of an expression as follows:

fvs(𝑥) ≜ {𝑥}
fvs(𝑛) ≜ {}

fvs(𝑒1 + 𝑒2) ≜ fvs(𝑒1) ∪ fvs(𝑒2)
fvs(𝑒1 * 𝑒2) ≜ fvs(𝑒1) ∪ fvs(𝑒2)

fvs(𝑥 := 𝑒1 ; 𝑒2) ≜ fvs(𝑒1) ∪ (fvs(𝑒2) \ {𝑥})
Now we can formulate two properties that imply a variant of the soundness property above:

1

• Progress: For each expression 𝑒 and store 𝜎 such that the free variables of 𝑒 are contained in
the domain of 𝜎, either 𝑒 is an integer or there exists a possible transition for ⟨𝜎, 𝑒⟩,

∀𝑒 ∈ Exp. ∀𝜎 ∈ Store.
fvs(𝑒) ⊆ dom(𝜎) =⇒ 𝑒 ∈ Int or (∃𝑒′ ∈ Exp. ∃𝜎′ ∈ Store. ⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩)

• Preservation: Evaluation preserves containment of free variables in the domain of the store,

∀𝑒 , 𝑒′ ∈ Exp. ∀𝜎, 𝜎′ ∈ Store.
fvs(𝑒) ⊆ dom(𝜎) and ⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩ =⇒ fvs(𝑒′) ⊆ dom(𝜎′).

The rest of this lecture shows how can we prove such properties using induction.

2 Inductive sets

Induction is an important concept in programming language theory. An inductively-defined set 𝐴 is
one that is described using a finite collection of axioms and inductive (inference) rules. Axioms of
the form

𝑎 ∈ 𝐴

indicate that 𝑎 is in the set 𝐴. Inductive rules

𝑎1 ∈ 𝐴 . . . 𝑎𝑛 ∈ 𝐴

𝑎 ∈ 𝐴

indicate that if 𝑎1 , . . . , 𝑎𝑛 are all elements of 𝐴, then 𝑎 is also an element of 𝐴.
The set 𝐴 is the set of all elements that can be inferred to belong to 𝐴 using a (finite) number of

applications of these rules, starting only from axioms. In other words, for each element 𝑎 of 𝐴, we
must be able to construct a finite proof tree whose final conclusion is 𝑎 ∈ 𝐴.

Example 1. The set described by a grammar is an inductive set. For instance, the set of arithmetic
expressions can be described with two axioms and three inference rules:

𝑥 ∈ Exp 𝑛 ∈ Exp

𝑒1 ∈ Exp 𝑒2 ∈ Exp
𝑒1 + 𝑒2 ∈ Exp

𝑒1 ∈ Exp 𝑒2 ∈ Exp
𝑒1 * 𝑒2 ∈ Exp

𝑒1 ∈ Exp 𝑒2 ∈ Exp
𝑥 := 𝑒1 ; 𝑒2 ∈ Exp

These axioms and rules describe the same set of expressions as the grammar:

𝑒 ::= 𝑥 | 𝑛 | 𝑒1 + 𝑒2 | 𝑒1 * 𝑒2 | 𝑥 := 𝑒1 ; 𝑒2

Example 2. The natural numbers (expressed here in unary notation) can be inductively defined:

0 ∈ N

𝑛 ∈ N

succ(𝑛) ∈ N

2

Example 3. The small-step evaluation relation → is an inductively defined set.

Example 4. The multi-step evaluation relation can be inductively defined:

⟨𝜎, 𝑒⟩ →∗ ⟨𝜎, 𝑒⟩ REFL
⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩ ⟨𝜎′, 𝑒′⟩ →∗ ⟨𝜎′′, 𝑒′′⟩

⟨𝜎, 𝑒⟩ →∗ ⟨𝜎′′, 𝑒′′⟩ TRANS

Example 5. The set of free variables of an expression 𝑒 can be inductively defined:

𝑦 ∈ fvs(𝑦)
𝑦 ∈ fvs(𝑒1)

𝑦 ∈ fvs(𝑒1 + 𝑒2)
𝑦 ∈ fvs(𝑒2)

𝑦 ∈ fvs(𝑒1 + 𝑒2)
𝑦 ∈ fvs(𝑒1)

𝑦 ∈ fvs(𝑒1 * 𝑒2)
𝑦 ∈ fvs(𝑒2)

𝑦 ∈ fvs(𝑒1 * 𝑒2)

𝑦 ∈ fvs(𝑒1)
𝑦 ∈ fvs(𝑥 := 𝑒1 ; 𝑒2)

𝑦 ≠ 𝑥 𝑦 ∈ fvs(𝑒2)
𝑦 ∈ fvs(𝑥 := 𝑒1 ; 𝑒2)

3 Inductive proofs

We can prove facts about elements of an inductive set using an inductive reasoning that follows
the structure of the set definition.

3.1 Mathematical induction

You have probably seen proofs by induction over the natural numbers, called mathematical induc-
tion. In such proofs, we typically want to prove that some property 𝑃 holds for all natural numbers,
that is, ∀𝑛 ∈ N. 𝑃(𝑛). A proof by induction works by first proving that 𝑃(0) holds, and then prov-
ing for all 𝑚 ∈ N, if 𝑃(𝑚) then 𝑃(𝑚 + 1). The principle of mathematical induction can be stated
succinctly as

𝑃(0) and (∀𝑚 ∈ N. 𝑃(𝑚) =⇒ 𝑃(𝑚 + 1)) =⇒ ∀𝑛 ∈ N. 𝑃(𝑛).
The proposition 𝑃(0) is the basis of the induction (also called the base case) while 𝑃(𝑚) =⇒ 𝑃(𝑚+1)
is called induction step (or the inductive case). While proving the induction step, the assumption that
𝑃(𝑚) holds is called the induction hypothesis.

3.2 Structural induction

Given an inductively defined set 𝐴, to prove that a property 𝑃 holds for all elements of 𝐴, we need
to show:

1. Base cases: For each axiom
𝑎 ∈ 𝐴 ,

𝑃(𝑎) holds.
2. Inductive cases: For each inference rule

𝑎1 ∈ 𝐴 . . . 𝑎𝑛 ∈ 𝐴

𝑎 ∈ 𝐴 ,

if 𝑃(𝑎1) and … and 𝑃(𝑎𝑛) then 𝑃(𝑎).

3

Note that if the set𝐴 is the set of natural numbers fromExample 2 above, then the requirements
for proving that 𝑃 holds for all elements of 𝐴 is equivalent to mathematical induction.

If 𝐴 describes a syntactic set, then we refer to induction following the requirements above as
structural induction. If 𝐴 is an operational semantics relation (such as the small-step operational
semantics relation→) then such an induction is called induction on derivations. Wewill see examples
of structural induction and induction on derivations throughout the course.

3.3 Example: Progress

Let’s consider the progress property defined above, and repeated here:

Progress: For each store 𝜎 and expression 𝑒 such that the free variables of 𝑒 are contained in the
domain of 𝜎, either 𝑒 is an integer or there exists a possible transition for ⟨𝜎, 𝑒⟩:
∀𝑒 ∈ Exp. ∀𝜎 ∈ Store. fvs(𝑒) ⊆ dom(𝜎) =⇒ 𝑒 ∈ Int or (∃𝑒′ ∈ Exp. ∃𝜎′ ∈ Store. ⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩)

Let’s rephrase this property in terms of an explicit predicate on expressions:

𝑃(𝑒) ≜ ∀𝜎 ∈ Store. fvs(𝑒) ⊆ dom(𝜎) =⇒ 𝑒 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩)
The idea is to build a proof that follows the inductive structure given by the grammar:

𝑒 ::= 𝑥 | 𝑛 | 𝑒1 + 𝑒2 | 𝑒1 * 𝑒2 | 𝑥 := 𝑒1 ; 𝑒2

This technique is called “structural induction on 𝑒.” We analyze each case in the grammar and show
that 𝑃(𝑒) holds for that case. Since the grammar productions 𝑒1 + 𝑒2 and 𝑒1 * 𝑒2 and 𝑥 := 𝑒1 ; 𝑒2 are
inductive, they are inductive steps in the proof; the cases for 𝑥 and 𝑛 are base cases. The proof
proceeds as follows.

Proof. Let 𝑒 be an expression. We will prove that

∀𝜎 ∈ Store. fvs(𝑒) ⊆ dom(𝜎) =⇒ 𝑒 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑒⟩ → ⟨𝜎′, 𝑒′⟩)
by structural induction on 𝑒. We analyze several cases, one for each case in the grammar for ex-
pressions:

Case 𝑒 = 𝑥: Let 𝜎 be an arbitrary store, and assume that fvs(𝑒) ⊆ dom(𝜎). By the definition of fvs
we have fvs(𝑥) = {𝑥}. By assumptionwe have {𝑥} ⊆ dom(𝜎) and so 𝑥 ∈ dom(𝜎). Let 𝑛 = 𝜎(𝑥).
By the VAR axiom we have ⟨𝜎, 𝑥⟩ → ⟨𝜎, 𝑛⟩, which finishes the case.

Case 𝑒 = 𝑛: We immediately have 𝑒 ∈ Int, which finishes the case.
Case 𝑒 = 𝑒1 + 𝑒2: Let 𝜎 be an arbitrary store, and assume that fvs(𝑒) ⊆ dom(𝜎). We will assume that

𝑃(𝑒1) and 𝑃(𝑒2) hold and show that 𝑃(𝑒) holds. Let’s expand these properties. We have

𝑃(𝑒1) = ∀𝜎 ∈ Store. fvs(𝑒1) ⊆ dom(𝜎) =⇒ 𝑒1 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑒1⟩ → ⟨𝜎′, 𝑒′⟩)
𝑃(𝑒2) = ∀𝜎 ∈ Store. fvs(𝑒2) ⊆ dom(𝜎) =⇒ 𝑒2 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑒2⟩ → ⟨𝜎′, 𝑒′⟩)

and want to prove:

𝑃(𝑒1 + 𝑒2) = ∀𝜎 ∈ Store. fvs(𝑒1+𝑒2) ⊆ dom(𝜎) =⇒ 𝑒1 + 𝑒2 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑒1 + 𝑒2⟩ → ⟨𝜎′, 𝑒′⟩)
We analyze several subcases.

4

Subcase 𝑒1 = 𝑛1 and 𝑒2 = 𝑛2: By ruleADD,we immediately have ⟨𝜎, 𝑛1 + 𝑛2⟩ → ⟨𝜎, 𝑝⟩, where
𝑝 = 𝑛1 + 𝑛2.

Subcase 𝑒1 ∉ Int: By assumption and the definition of fvs we have

fvs(𝑒1) ⊆ fvs(𝑒1 + 𝑒2) ⊆ dom(𝜎)
Hence, by the induction hypothesis 𝑃(𝑒1)we also have ⟨𝜎, 𝑒1⟩ → ⟨𝜎′, 𝑒′⟩ for some 𝑒′ and
𝜎′. By rule LADD we have ⟨𝜎, 𝑒1 + 𝑒2⟩ → ⟨𝜎′, 𝑒′ + 𝑒2⟩.

Subcase 𝑒1 = 𝑛1 and 𝑒2 ∉ Int: By assumption and the definition of fvs we have

fvs(𝑒2) ⊆ fvs(𝑒1 + 𝑒2) ⊆ dom(𝜎)
Hence, by the induction hypothesis 𝑃(𝑒2)we also have ⟨𝜎, 𝑒2⟩ → ⟨𝜎′, 𝑒′⟩ for some 𝑒′ and
𝜎′. By rule RADD we have ⟨𝜎, 𝑒1 + 𝑒2⟩ → ⟨𝜎′, 𝑒1 + 𝑒′⟩, which finishes the case.

Case 𝑒 = 𝑒1 * 𝑒2: . Analogous to the previous case.
Case 𝑒 = 𝑥 := 𝑒1 ; 𝑒2: . Let 𝜎 be an arbitrary store, and assume that fvs(𝑒) ⊆ dom(𝜎). As above, we

assume that 𝑃(𝑒1) and 𝑃(𝑒2) hold and show that 𝑃(𝑒) holds. Let’s expand these properties.
We have

𝑃(𝑒1) = ∀𝜎. fvs(𝑒1) ⊆ dom(𝜎) =⇒ 𝑒1 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑒1⟩ → ⟨𝜎′, 𝑒′⟩)
𝑃(𝑒2) = ∀𝜎. fvs(𝑒2) ⊆ dom(𝜎) =⇒ 𝑒2 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑒2⟩ → ⟨𝜎′, 𝑒′⟩)

and want to prove:

𝑃(𝑥 := 𝑒1 ; 𝑒2) =∀𝜎. fvs(𝑥 := 𝑒1 ; 𝑒2) ⊆ dom(𝜎) =⇒
𝑥 := 𝑒1 ; 𝑒2 ∈ Int or (∃𝑒′, 𝜎′. ⟨𝜎, 𝑥 := 𝑒1 ; 𝑒2⟩ → ⟨𝜎′, 𝑒′⟩)

We analyze several subcases.

Subcase 𝑒1 = 𝑛1: By rule ASSGN we have ⟨𝜎, 𝑥 := 𝑛1 ; 𝑒2⟩ → ⟨𝜎′, 𝑒2⟩ where 𝜎′ = 𝜎[𝑥 ↦→ 𝑛1].
Subcase 𝑒1 ∉ Int: By assumption and the definition of fvs we have

fvs(𝑒1) ⊆ fvs(𝑥 := 𝑒1 ; 𝑒2) ⊆ dom(𝜎)
Hence, by induction hypothesis we also have ⟨𝜎, 𝑒1⟩ → ⟨𝜎′, 𝑒′⟩ for some 𝑒′ and 𝜎′. By
the rule ASSGN1 we have ⟨𝜎, 𝑥 := 𝑒1 ; 𝑒2⟩ → ⟨𝜎′, 𝑥 := 𝑒′1 ; 𝑒2⟩, which finishes the case and
the inductive proof.

5

	Program Properties
	Inductive sets
	Inductive proofs
	Mathematical induction
	Structural induction
	Example: Progress

