| CS 4110 - 11/21/25
| Lab 33 - Logical Relations

.4_ ——

We've seen how logical relations can be used to prove termination for
the simply-typed lambda calculus. Today we'll explore how it can be
used to prove type safety, and to get the "free theorems" that result
from parametricity.

These notes are based on Amal Ahmed's notes from OPLSS
(https://www.cs.uoregon.edu/research/summerschool/summer23/_lectures/
Logical_Relations_Notes.pdf)

I. Termination for STLC

As a review, here are the definitions for proving termination using a
logical relation. We'll use slightly different notation, writing e €
E[t] instead of Rt(e) like we did last time. This will set up the
notation we use for other logical relations in the rest of this lab.

We define a family of sets, indexed by types.

Efunit] := { e | |- e : unit A e halts }
E[ti~>t2] :={ e | e |- e : Ti»T2 A e halts A V e' € E[T1]. e e' €
Eft2] }

Then we prove,

- If e € E[t] then e halts.

- If - e : Tt then e € E[T].

which yields termination for STLC. Of course, these lemmas need to be
generalized with a context, like we saw last time. But we won't
re-hash that here.

II. Semantic Type Soundness

We can also use logical relations to prove type safety. Unlike the
standard recipe using Progress and Preservation lemmas, this is a more
semantic argument.

To illustrate, we'll again use STLC with unit:

e ii=x | () | Axit.e | e1 ez
v i:i= () | Ax:iTt.e
T ::=unit | T -7

We will call an expression "safe" if all of its normal forms (i.e.,
expressions that cannot take any more steps) are values:

A

safe(e) =2 { e | Ve'. (e >e')=>3e"'.e" >¢e'""ve'eE
Value }

Note that safety does not imply termination, even though it does hold
for this language of course.

We will then define two sets indexed by types.

V[t] <€ Value
Viunit] = { () }
Viti-t2] = { Ax.e | V v € V[t1]. elv/x] € E[t2] }

Eft] € Expr
Eltl={e | Ve'. (e >e'" A e' -/->) =>¢e"' €V[T] }

Next we prove the following lemmas:

If - e : Tt then e € E[T].
If e € E[t] then safe(e).

ITII. Parametricity
Now let's extend our langauge to get System F

e :i= ... | Na.e | e [t]
T :i=unit | ™1t | a | Va.T

Logical relations now depend on a *xkrelation environmentss:
p : TypeVar - Type x Type x Rel
where Rel is a relation on values, i.e., a subset of ValuexValue.

{ (0),0)

Vlunit]_p =
(a)

Vial_p = p

VITi-T2]_p { (Ax.e1 , Ax.e2) | V (vi,v2) € V[t1]_p . (exlvi/x],
e2[vz2/x]) € E[tz2]_p

ViVa.tl_p = { (Aa.ex1 , Aa.ez2) | V 11, T2, R. (ei[t1/a], ez2[t2/0]) €
Eftl_{pla~(T1, T2, R)I}

Note that parametricity ensures that at polymorphic types, the
behavior is uniform across *allx relations R.

For brevity, we will elide the definition of the logical relation for
E[t]. See Ahmed's notes for details. The fundamental lemma says that
expressions are related to themselves.

As an example, suppose

f @ Va. a - a
f =N e

We know that for every relation R, (el[t:1/a], elt2/a]) €

Elo-a]_{p[a~R]}. Unfolding the definition of the function type, we
have:

For every (vi,vz2) € R. (el[ti/allvi/x], eltz2/al[v2/x]) € E[a]
_{plow(T2, T2, R)1}.

Thus, f must map related inputs to related outputs for every relation
R!

Let A be a type and let g be an A —> A function. Let R be the
relation corresponding to g:

R=9{(x, gx) | x€A}
Using the definitions above, for every (x, g x) in R, it follows that
(elt/a]l x , elt/al (g x)) €R
By the defintion of R this means
e[A/a]l (g x) = g (el[A/a] x)
The only function that commutes with every function g in this way is
the identity! So e must be equivalent to the identity function on

A. This is one of the "free theorems" from Wadler's paper. And,
remarkably, there are free theorems for *xeveryx type in System F!

