Dependent types Il
Proofs == Programs

Guest lecture (Mark Barbone)




Last time...

e Typesareterms, too!
e Dependent function type (“pi type”)
o fhastype M(x:A) > B if whenevera:A, then f(a) : Bla/x]
o Handles both functions A - B and polymorphic types V x.
B
e Dependent pair type (“sigma type”)
o (a,b) hastype Z(x:A)xBifa:A,andb: B[a/x]
o Syntactic sugar: Ax B if xis not used



A couple basic new types

We'll use these (non-dependent) types, too.

e Theunittypelhastheoneelement():1

e Thetype A+Bhaselementsinl(a) andinr(b), fora:Aand b:B.
o Pattern matching: case e of inl(a) = ... |inr(b) = ...
o Special case: bool=1+1

e The empty type 0 has no elements
o Pattern matching: case e of {} (outputs any type you like!)



Interesting things you can do with boring types

Suppose we have a BST data structure, and a function
valid : BST > bool

Q: what are the inhabitants of
> (tree : BST) x (if valid(tree) then 1 else 0) 7

A: pairs (tree, (), but only if valid(tree)
> (in bijection with) the set of valid trees!



Propositions

The type if valid(tree) then 1 else 0 is a proposition:

e Wedon’treally care about its elements — just that it has one
o e:ifvalid(tree) then 1 else 0 is evidence that the tree is valid

Q: How much logic can we do with propositions as types?

VN #®ROCG

THEOREM PROVER




Implementing logic with types

Proposition Type
true
false
Pand Q
PorQ
Pimplies Q

PxQ
P+Q
P->Q



Problems

For each tautology, (a) write down a corresponding type, and (b)
prove it by making a term of that type

Pimplies P

P implies (Q implies P)

P implies true

false implies P

(Pand Q) implies P

(P and Q) implies (Q and P)



Is there anything you can't prove like this?

It turns out you can’t do proof by contradiction

To support proof by contradiction, we need to add an extra built-in operation.



Implementing logic with types (cont'd)
Proposition Type
for all x:A, P(x) M(x:A) > P(x)
there exists x:A, s.t. P(x) > (x:A) x P(x)



Leibniz equality

A coercion function f: V B. B(x) » B(y) gives evidence that x==y.
Let x ==y abbreviate the type V B. B(x) > B(y).

Prove (by writing well-typed lambda terms) the following:

1. Reflexivity: x==
2. Transitivity: ifx==yandy==z, thenx==1z.
3. Symmetry:ifx==y, theny==x. (harder!)



More quantifiers

If for all x, P(x) implies Q, then (there exists x s.t. P(x)) implies Q

If (there exists x s.t. P(x)) implies Q, then for all x, P(x) implies Q

If there exists x s.t. for all y, P(x,y), then for all y, there exists x s.t. P(x,y)
(“Axiom of choice”) If for all x : A, there exists y : B s.t. P(x,y),

then there exists a function f: A> B s.t. forall x : A, P(x, f(x))

il o



