lab27.txt

| cs 4110 - 10/31/2025 |
| Lab 27 - Type Systems |

In this lab, we do a few examples using the extension of lambda
calculus with sum types we have studied previously.

e 1= X

| \x . e

| el + e2

| inl_{tl + t2} e

| inr_{tl + t2} e

| (case e of el | e?)
G |-e : tl
———————————————————————————— [T-Inl]
G |- inl_{tl1+t2} e : tl + t2
G |-e: 2
———————————————————————————— [T-Inr]
G |- inr_{tl+t2} e : tl + t2
G |- e : tl + t2
G |- el :tl >t
G |-e2 :t2 >t
—————————————————————————— [T-Case]
G |- case e of el | e2 t
E ::= ... | inl_{t1+t2} E | inr_{tl+t2} E | (case E of el | e2)

————————————————————————————————————— [E-Case—-Inl]

————————————————————————————————————— [E-Case-Inr]

* Q : Suppose we add the following axiom to our operational semantics:

——————————————————————————————————————— [E-Case-Weird]

Which, if any of, the key properties breaks? Progress? Preservation?

A: Nothing breaks. In fact, adding operational semantics rules can
only make Progress easier to satisfy. And, it so happens that the
Preservation theorem still holds here, even though the new axiom
changes the evaluation order.

* Q: Now suppose we add this axiom instead:

—————————————————————————— [E-Case-Weird]
case e of el | e2 —> el e

Which, if any of, the key properties breaks? Progress? Preservation?
A: Again, Progress still holds as adding operational semantics rules

can only make it easier to satisfy. But Preservation definitely
breaks. Here is a counter-example:

e0 = case inl_{unit + int} () of
(\x : unit. x)
| (\n:int. ())

By T-Case, T-Inl, and other rules we have
e0 : unit
By E-Case-Weird, we have

e0 -> e0’

lab27.txt

where
e0’ = (\x : unit. x) inl_{unit + int} ()

And e0’ is definitely *not* well typed!
* Q: What if we keep the new axiom,

—————————————————————————— [E-Case-Weird]

but also add the following rule to the type system:

G |- e : tl + t2

G |- el : tl +t2 —> t
——————————————————————————— [T-Case-Weird2]
G |- case e of el | e2 : t

Which, if any of, the key properties breaks? Progress? Preservation?

A: This is a bit tricky. The new typing rule does seem like it might
"patch up" cases where E-Case-Weird caused a problem, by forcing el
to have a function type whose domain is the entire sum

type. However, we can still break Preservation by typing an
expression using the original typing rule, T-Case, and then letting
it step with E-Case-Weird.

In fact, the same counter-example as above still works.

e0 = case inl_{unit + int} () of
(\x : unit. x)
| (\n:int. ())

By T-Case, T-Inl, and other rules, we still have
e0 : unit

Again, by E-Case-Weird, we still have
e0 —> e0’
where

e0’ = (\x : unit. x) inl_{unit + int} ()

And e0’ is still not well typed!

