Lecture 26
Recursive Types
Many languages support data types that refer to themselves:

Java

class Tree {
 Tree leftChild, rightChild;
 int data;
}

OCaml

type tree = Leaf | Node of tree * tree * int

\[\text{\lambda-calculus?} \]

tree = unit + int \times tree \times tree
Recursive Types

Many languages support data types that refer to themselves:

Java

```java
class Tree {
    Tree leftChild, rightChild;
    int data;
}
```

OCaml

```ocaml
type tree = Leaf | Node of tree * tree * int
```
Many languages support data types that refer to themselves:

Java

```java
class Tree {
    Tree leftChild, rightChild;
    int data;
}
```

OCaml

```ocaml```
type tree = Leaf | Node of tree * tree * int
```

λ-calculus?

\[
\text{tree} = \text{unit} + \text{int} \times \text{tree} \times \text{tree}
\]
Recursive Type Equations

We would like \texttt{tree} to be a solution of the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]

However, no such solution exists with the types we have so far...
Unwinding Equations

We could unwind the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]
Unwinding Equations

We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]

\[= \text{unit} + \text{int} \times \]

\[(\text{unit} + \text{int} \times \alpha \times \alpha) \times \]

\[(\text{unit} + \text{int} \times \alpha \times \alpha) \]
Unwinding Equations

We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
\quad (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\\n\quad (\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \text{unit} + \text{int} \times \\
\quad (\text{unit} + \text{int} \times \\
\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\\n\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha)) \times \\\n\quad (\text{unit} + \text{int} \times \\
\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\\n\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha)) \times \\
\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha)) \\
\]

If we take the limit of this process, we have an infinite tree.
Unwinding Equations

We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]

\[= \text{unit} + \text{int} \times (\text{unit} + \text{int} \times \alpha \times \alpha) \times (\text{unit} + \text{int} \times \alpha \times \alpha) \]

\[= \text{unit} + \text{int} \times (\text{unit} + \text{int} \times (\text{unit} + \text{int} \times \alpha \times \alpha) \times (\text{unit} + \text{int} \times \alpha \times \alpha)) \times (\text{unit} + \text{int} \times \alpha \times \alpha) \]

\[= \ldots \]
Unwinding Equations

We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]

\[= \text{unit} + \text{int} \times \]

\[(\text{unit} + \text{int} \times \alpha \times \alpha) \times \]

\[(\text{unit} + \text{int} \times \alpha \times \alpha) \]

\[= \text{unit} + \text{int} \times \]

\[(\text{unit} + \text{int} \times \text{unit} + \text{int} \times \alpha \times \alpha) \times \]

\[(\text{unit} + \text{int} \times \text{unit} + \text{int} \times \alpha \times \alpha) \]

\[= \ldots \]

If we take the limit of this process, we have an infinite tree.
Infinite Types

Think of this as an infinite labeled graph whose nodes are labeled with the type constructors \times, $+$, \textbf{int}, and \textbf{unit}.

This infinite tree is a solution of our equation, and this is what we take as the type \texttt{tree}.
We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the \textit{fixed-point type constructor} μ.

\[\mu \alpha. \, \tau \]
We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* μ.

$$\mu \alpha. \tau$$

Here’s a *tree* type satisfying our original equation:

$$\text{tree} \triangleq \mu \alpha. \text{unit} + \text{int} \times \alpha \times \alpha.$$

\textit{µ Types}
We’ll define two treatments of recursive types. With equirecursive types, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau \{ \mu \alpha. \tau / \alpha \} \]
We’ll define two treatments of recursive types. With *equirecursive types*, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau \{ \mu \alpha. \tau / \alpha \} \]

Two typing rules let us switch between folded and unfolded:

\[\frac{\Gamma \vdash e : \tau \{ \mu \alpha. \tau / \alpha \}}{\Gamma \vdash e : \mu \alpha. \tau} \quad \mu \text{-INTRO} \]

\[\frac{\Gamma \vdash e : \mu \alpha. \tau}{\Gamma \vdash e : \tau \{ \mu \alpha. \tau / \alpha \}} \quad \mu \text{-ELIM} \]
Isorecursive Types

Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau/\alpha\}$.
Isorecursive Types

Alternatively, isorecursive types avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau/\alpha\}$.

Converting between the two uses explicit fold and unfold operations:

\[
\begin{align*}
\text{unfold}_{\mu \alpha. \tau} & : \mu \alpha. \tau \rightarrow \tau\{\mu \alpha. \tau/\alpha\} \\
\text{fold}_{\mu \alpha. \tau} & : \tau\{\mu \alpha. \tau/\alpha\} \rightarrow \mu \alpha. \tau
\end{align*}
\]
The typing rules introduce and eliminate μ-types:

\[
\Gamma \vdash e : \tau\{\mu \alpha. \tau/\alpha\} \\
\hline
\Gamma \vdash \text{fold} e : \mu \alpha. \tau \\
\Gamma \vdash \text{unfold} e : \tau\{\mu \alpha. \tau/\alpha\}
\]

μ-INTRO

μ-ELIM
We also need to augment the operational semantics:

\[
\text{unfold } (\text{fold } e) \rightarrow e
\]

Intuitively, to access data in a recursive type \(\mu \alpha. \tau \), we need to \textbf{unfold} it first. And the only way that values of type \(\mu \alpha. \tau \) could have been created is via \textbf{fold}.
Example

Here’s a recursive type for lists of numbers:

\[\text{intlist} \equiv \mu \alpha. \text{unit} + \text{int} \times \alpha. \]
Example

Here’s a recursive type for lists of numbers:

\[\text{intlist} \triangleq \mu \alpha. \text{unit} + \text{int} \times \alpha. \]

Here’s how to add up the elements of an \textbf{intlist}:

\[
\begin{align*}
\text{let sum } &= \\text{fix}\ (\lambda f: \text{intlist} \rightarrow \text{intlist} \\
&\quad \lambda l: \text{intlist}. \text{case unfold } l \text{ of} \\
&\quad \quad (\lambda u: \text{unit}. 0) \\
&\quad \quad | (\lambda p: \text{int } \times \text{intlist}. (#1 p) + f(#2 p)))))
\end{align*}
\]
Encoding Numbers

Recursive types let us encode the natural numbers!

\[\text{fold}(\text{inl} \ unit + \text{nat})) \]

\[\text{fold}(\text{inr} \ unit + \text{nat}) \]
Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha \]
Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha
\]

\[
0 \triangleq \text{fold} (\text{inl}_{\text{unit} + \text{nat}} ())
\]
Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha \]

\[0 \triangleq \text{fold}\left(\text{inl}_{\text{unit} + \text{nat}}()\right) \]

\[1 \triangleq \text{fold}\left(\text{inr}_{\text{unit} + \text{nat}} 0\right) \]

\[2 \triangleq \text{fold}\left(\text{inr}_{\text{unit} + \text{nat}} 1\right), \]

\[\vdots \]
Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha
\]

\[
0 \triangleq \text{fold} (\text{inl}_\text{unit+nat} ())
\]

\[
1 \triangleq \text{fold} (\text{inr}_\text{unit+nat} 0)
\]

\[
2 \triangleq \text{fold} (\text{inr}_\text{unit+nat} 1) ,
\]

\[\vdots\]

The successor function has type \text{nat} \to \text{nat}:

\[
(\lambda x : \text{nat}. \text{fold} (\text{inr}_\text{unit+nat} x))
\]
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x$$

$$\Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x.\ x\ x \quad \quad \Omega \triangleq \omega\ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \, x \quad \Omega \triangleq \omega \, \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

x is used as the argument to this function, so it must have type σ.

Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x \quad \Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

x is used as the argument to this function, so it must have type σ.

So let’s write a type equation:

$$\sigma = \sigma \rightarrow \tau$$
Self-Application and \(\Omega \)

Putting these pieces together, the fully typed \(\omega \) term is:

\[
\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) \ x
\]
Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu\alpha. (\alpha \to \tau). (\text{unfold } x) \, x$$

The type of ω is $(\mu\alpha. (\alpha \to \tau)) \to \tau$.

So the type of $\text{fold} \, \omega$ is $\mu\alpha. (\alpha \to \tau)$.
Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) x$$

The type of ω is $(\mu \alpha. (\alpha \rightarrow \tau)) \rightarrow \tau$.

So the type of $\text{fold } \omega$ is $\mu \alpha. (\alpha \rightarrow \tau)$.

Now we can define $\Omega = \omega (\text{fold } \omega)$. It has type τ.
Self-Application and Ω

We can even write ω in OCaml:

```ocaml
# type u = Fold of (u -> u);;
val type u = Fold of (u -> u) : signature

# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>

# omega (Fold omega);;
...runs forever until you hit control-c
```
With recursive types, we can type everything in the untyped lambda calculus!
With recursive types, we can type everything in the untyped lambda calculus!

Every λ-term can be applied as a function to any other λ-term. So let’s define an “untyped” type:

$$U \triangleq \mu \alpha. \alpha \rightarrow \alpha$$
Encoding \(\lambda \)-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every \(\lambda \)-term can be applied as a function to any other \(\lambda \)-term. So let’s define an “untyped” type:

\[
U \triangleq \mu \alpha. \alpha \rightarrow \alpha
\]

The full translation is:

\[
[x] \triangleq x \\
[e_0 \ e_1] \triangleq (\text{unfold} \ [e_0]) \ [e_1] \\
[\lambda x. \ e] \triangleq \text{fold} \ \lambda x : U. \ [e]
\]

Every untyped term maps to a term of type \(U \).