Lecture 11
Weakest Preconditions
Generating Preconditions

To fill in a precondition:

\[\{ \}\ c \{Q\} \]

there are many possible preconditions—and some are more useful than others.
Weakest Preconditions

Intuition: The weakest liberal precondition for c and Q is the weakest assertion P such that $\{P\}$ c $\{Q\}$ is valid.
Weakest Preconditions

Intuition: The weakest liberal precondition for c and Q is the weakest assertion P such that $\{P\} \ c \ {Q}$ is valid.

More formally...

Definition (Weakest Liberal Precondition)

P is a weakest liberal precondition of c and Q written $wlp(c, Q)$ if:

$$\forall \sigma, l. \ \sigma \models I \ P \iff (C[c] \sigma) \text{ undefined} \lor (C[c] \sigma) \models I \ Q$$
Weakest Preconditions

\[wlp(\text{skip}, P) = P \]
Weakest Preconditions

\[wlp(\text{skip}, P) = P \]
\[wlp(x := a, P) = P[a/x] \]
Weakest Preconditions

\[\text{wlp(\text{skip}, P)} = P \]
\[\text{wlp(x := a, P)} = P[a/x] \]
\[\text{wlp((c_1; c_2), P)} = \text{wlp(c_1, wlp(c_2, P))} \]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}\left(\text{skip}, P\right) &= P \\
\text{wlp}(x := a, P) &= P[a/x] \\
\text{wlp}\left((c_1; c_2), P\right) &= \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}\left(\text{if } b \text{ then } c_1 \text{ else } c_2, P\right) &= (b \implies \text{wlp}(c_1, P)) \land \\
&\quad (\neg b \implies \text{wlp}(c_2, P))
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}(\text{skip}, P) & = P \\
\text{wlp}(x := a, P) & = P[a/x] \\
\text{wlp}((c_1; c_2), P) & = \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) & = (b \implies \text{wlp}(c_1, P)) \land (\neg b \implies \text{wlp}(c_2, P)) \\
\text{wlp}(\text{while } b \text{ do } c, P) & = \bigwedge_i F_i(P)
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
wlp(\text{skip}, P) &= P \\
wlp(x := a, P) &= P[a/x] \\
wlp((c_1; c_2), P) &= wlp(c_1, wlp(c_2, P)) \\
wlp(\text{if } b \text{ then } c_1 \text{ else } c_2, P) &= (b \implies wlp(c_1, P)) \land \\
& \hspace{1cm} (\neg b \implies wlp(c_2, P)) \\
wlp(\text{while } b \text{ do } c, P) &= \bigwedge_i F_i(P)
\end{align*}
\]

where

\[
\begin{align*}
F_0(P) &= \text{true} \\
F_{i+1}(P) &= (\neg b \implies P) \land (b \implies wlp(c, F_i(P)))
\end{align*}
\]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[
p := \text{getPacket}();
\]
\[
\text{processPacket}(p);
\]
\[
\textbf{assert } P_{\text{safe}}
\]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{processPacket}(p); \]
\[\{ P_{\text{safe}} \} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\{ P_{\text{filter}}(p) \}; \]
\[\text{processPacket}(p); \]
\[\{ P_{\text{safe}} \} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\textbf{assert } P_{\text{filter}}(p); \]
\[\text{processPacket}(p); \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\textbf{assert} \; P_{\text{filter}}(p); \]
\[\text{processPacket}(p); \]

\(P_{\text{filter}} \) should be the \textit{weakest} precondition to avoid ruling out legitimate inputs.

Properties of Weakest Preconditions

Lemma (Correctness of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \]
\[\vdash \{ \text{wlp}(c, Q) \} c \{ Q \} \text{ and } \]
\[\forall R \in \text{Assn}. \vdash \{ R \} c \{ Q \} \text{ implies } (R \implies \text{wlp}(c, Q)) \]
Properties of Weakest Preconditions

Lemma (Correctness of Weakest Preconditions)

∀c ∈ Com, Q ∈ Assn.

\[\vdash \{ \text{wlp}(c, Q) \} \ c \ \{ Q \} \quad \text{and} \quad \forall R ∈ \text{Assn.} \ \vdash \{ R \} \ c \ \{ Q \} \ implies \ (R \implies \text{wlp}(c, Q)) \]

Lemma (Provability of Weakest Preconditions)

∀c ∈ Com, Q ∈ Assn.

\[\vdash \{ \text{wlp}(c, Q) \} \ c \ \{ Q \} \]
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Completeness: If it’s true, then a proof exists.
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Definition (Soundness)

\[\vdash \{ P \} c \{ Q \} \text{ then } \models \{ P \} c \{ Q \}. \]

Completeness: If it’s true, then a proof exists.

Definition (Completeness)

\[\models \{ P \} c \{ Q \} \text{ then } \vdash \{ P \} c \{ Q \}. \]
Kurt Gödel vs. Sir Tony Hoare
Theorem (Cook (1974))

\[\forall P, Q \in \text{Assn}, c \in \text{Com}. \quad \models \{P\} c \{Q\} \text{ implies } \vdash \{P\} c \{Q\}. \]
Relative Completeness

Theorem (Cook (1974))

∀P, Q ∈ Assn, c ∈ Com. ⊨ \{P\} c \{Q\} implies ⊢ \{P\} c \{Q\}.

Proof Sketch.

Let \{P\} c \{Q\} be a valid partial correctness specification.
By the first Lemma we have ⊨ P \implies wlp(c, Q).
By the second Lemma we have ⊢ \{wlp(c, Q)\} c \{Q\}.
We conclude ⊢ \{P\} c \{Q\} using the CONSEQUENCE rule.