1 Lambda calculus evaluation

There are many different evaluation strategies for the \(\lambda \)-calculus. The most permissive is full \(\beta \) reduction, which allows any redex—i.e., any expression of the form \((\lambda x. e_1) e_2\)—to step to \(e_1\{e_2/x\} \) at any time. It is defined formally by the following small-step operational semantics rules:

\[
\begin{align*}
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} & \quad \frac{e_2 \rightarrow e'_2}{e_1 e_2 \rightarrow e_1 e'_2} & \quad \frac{e_1 \rightarrow e'_1}{\lambda x. e_1 \rightarrow \lambda x. e'_1} & \quad \beta \frac{(\lambda x. e_1) e_2 \rightarrow e_1\{e_2/x\}}{e_2 \rightarrow e'_2}
\end{align*}
\]

The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application to reduce after its argument has been reduced to a value (i.e., a \(\lambda \)-abstraction) and does not allow evaluation under a \(\lambda \). It is described by the following small-step operational semantics rules (here we show a left-to-right version of CBV):

\[
\begin{align*}
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} & \quad \frac{e_2 \rightarrow e'_2}{v_1 e_2 \rightarrow v_1 e'_2} & \quad \beta \frac{(\lambda x. e_1) v_2 \rightarrow e_1\{v_2/x\}}{e_2 \rightarrow e'_2}
\end{align*}
\]

Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is not a value but does not allow evaluation under a \(\lambda \). It is described by the following small-step operational semantics rules:

\[
\begin{align*}
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} & \quad \beta \frac{(\lambda x. e_1) e_2 \rightarrow e_1\{e_2/x\}}{e_2 \rightarrow e'_2}
\end{align*}
\]

2 Confluence

It is not hard to see that the full \(\beta \) reduction strategy is non-deterministic. This raises an interesting question: does the choices made during the evaluation of an expression affect the final result? The answer turns out to be no: full \(\beta \) reduction is confluent in the following sense:

Theorem (Confluence). If \(e \rightarrow^* e_1 \) and \(e \rightarrow^* e_2 \) then there exists \(e' \) such that \(e_1 \rightarrow^* e' \) and \(e_2 \rightarrow^* e' \).

Confluence can be depicted graphically as follows:

\[
\begin{array}{c}
\text{e} \\
\text{e}_1 \rightarrow^* \text{e}_2 \\
\text{e}' \rightarrow^* \text{e}_1 \rightarrow^* \text{e}_2 \\
\end{array}
\]

Confluence is often also called the Church–Rosser property.
3 Substitution

Each of the evaluation relations for λ-calculus has a β defined in terms of a substitution operation on expressions. Because the expressions involved in the substitution may share some variable names (and because we are working up to α-equivalence) the definition of this operation is slightly subtle and defining it precisely turns out to be tricker than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator. Here we are substituting e for x in some other expression:

$$
y{e/x} = \begin{cases}
e & \text{if } y = x \\ y & \text{otherwise} \end{cases}
$$

$$(e_1 e_2){e/x} = (e_1{e/x})(e_2{e/x})
$$

$$(\lambda y.e_1){e/x} = \lambda y.e_1{e/x} \quad \text{where } y \neq x
$$

The intuitive idea is that the last rule relies on α-equivalence to “rewrite” abstractions that use x so they do not conflict. Unfortunately, this definition produces the wrong results when we substitute an expression with free variables under a λ. For example,

$$(\lambda y.x){y/x} = (\lambda y.y)$$

To fix this problem, we need to revise our definition so that when we substitute under a λ we do not accidentally bind variables in the expression we are substituting. The following definition correctly implements capture-avoiding substitution:

$$
y{e/x} = \begin{cases}
e & \text{if } y = x \\ y & \text{otherwise} \end{cases}
$$

$$(e_1 e_2){e/x} = (e_1{e/x})(e_2{e/x})
$$

$$(\lambda y.e_1){e/x} = \lambda y.(e_1{e/x}) \quad \text{where } y \neq x \text{ and } y \notin \text{fv}(e)
$$

Note that in the case for λ-abstractions, we require that the bound variable y be different from the variable x we are substituting for and that y not appear in the free variables of e, the expression we are substituting. Because we work up to α-equivalence, we can always pick y to satisfy these side conditions. For example, to calculate $(\lambda z.x z){(w y z)/x}$ we first rewrite $\lambda z.x z$ to $\lambda u.x u$ and then apply the substitution, obtaining $\lambda u.(w y z) u$ as the result.