Lecture 11
Weakest Preconditions
\{\text{true}\}

x := m;
y := 0;
\textbf{while} (n < x) \textbf{do} (
 x := x - n;
 y := y + 1
)

\{ \}
In other words, the program divides m by n, so y is the quotient and x is the remainder.
Generating Preconditions

To fill in a precondition:

\[
\{ \quad \} c \{ Q \}
\]

there are many possible preconditions—and some are more useful than others.
Weakest Preconditions

Intuition: The weakest liberal precondition for \(c \) and \(Q \) is the weakest assertion \(P \) such that \(\{P\} \ c \ \{Q\} \) is valid.
Weakest Preconditions

Intuition: The weakest liberal precondition for c and Q is the weakest assertion P such that $\{P\} \ c \ \{Q\}$ is valid.

More formally...

Definition (Weakest Liberal Precondition)

P is a weakest liberal precondition of c and Q written $wlp(c, Q)$ if:

$$\forall \sigma, I. \sigma \vDash I \ P \iff (C[c] \sigma) \text{ undefined } \lor (C[c] \sigma) \vDash I \ Q$$
Weakest Preconditions

\[wlp(\text{skip}, P) = P \]
Weakest Preconditions

\[wlp(\text{skip}, P) = P \]
\[wlp(x := a, P) = P[a/x] \]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}(\text{skip}, P) &= P \\
\text{wlp}(x := a, P) &= P[a/x] \\
\text{wlp}((c_1; c_2), P) &= \text{wlp}(c_1, \text{wlp}(c_2, P))
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}(\textbf{skip}, P) &= P \\
\text{wlp}(x := a, P) &= P[a/x] \\
\text{wlp}((c_1; c_2), P) &= \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}(\textbf{if } b \text{ then } c_1 \textbf{ else } c_2, P) &= (b \implies \text{wlp}(c_1, P)) \land \\
&\quad (\neg b \implies \text{wlp}(c_2, P))
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
\text{wlp(}\text{skip}, P) &= P \\
\text{wlp}(x := a, P) &= P[a/x] \\
\text{wlp}((c_1; c_2), P) &= \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) &= (b \implies \text{wlp}(c_1, P)) \land (\neg b \implies \text{wlp}(c_2, P)) \\
\text{wlp}(\text{while } b \text{ do } c, P) &= \bigwedge_i F_i(P)
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
\text{wlp}(\text{skip}, P) & \quad = \quad P \\
\text{wlp}(x := a, P) & \quad = \quad P[a/x] \\
\text{wlp}((c_1; c_2), P) & \quad = \quad \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) & \quad = \quad (b \implies \text{wlp}(c_1, P)) \land (\neg b \implies \text{wlp}(c_2, P)) \\
\text{wlp}(\text{while } b \text{ do } c, P) & \quad = \quad \bigwedge_i F_i(P)
\end{align*}
\]

where

\[
\begin{align*}
F_0(P) & \quad = \quad \text{true} \\
F_{i+1}(P) & \quad = \quad (\neg b \implies P) \land (b \implies \text{wlp}(c, F_i(P)))
\end{align*}
\]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{processPacket}(p); \]
\[\textbf{assert} \ P_{\text{safe}} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{processPacket}(p); \]
\[\{ P_{\text{safe}} \} \]

Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[
p := \text{getPacket}();
\{ P_{\text{filter}}(p) \};
\text{processPacket}(p);
\{ P_{\text{safe}} \}\
\]
Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\textbf{assert } P_{\text{filter}}(p); \]
\[\text{processPacket}(p); \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[
p := \text{getPacket}(); \\
\textbf{assert } P_{\text{filter}}(p); \\
\text{processPacket}(p);
\]

\(P_{\text{filter}}\) should be the \textit{weakest} precondition to avoid ruling out legitimate inputs.

Lemma (Correctness of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \]
\[\models \{ wlp(c, Q) \} \ c \ \{ Q \} \quad \text{and} \]
\[\forall R \in \text{Assn}. \models \{ R \} \ c \ \{ Q \} \implies (R \implies wlp(c, Q)) \]
Properties of Weakest Preconditions

Lemma (Correctness of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \]
\[\models \{ \text{wlp}(c, Q) \} c \{ Q \} \text{ and } \]
\[\forall R \in \text{Assn}. \models \{ R \} c \{ Q \} \text{ implies } (R \implies \text{wlp}(c, Q)) \]

Lemma (Provability of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \vdash \{ \text{wlp}(c, Q) \} c \{ Q \} \]
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Completeness: If it’s true, then a proof exists.
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Definition (Soundness)
If \(\vdash \{ P \} c \{ Q \} \) then \(\models \{ P \} c \{ Q \} \).

Completeness: If it’s true, then a proof exists.

Definition (Completeness)
If \(\models \{ P \} c \{ Q \} \) then \(\vdash \{ P \} c \{ Q \} \).
Kurt Gödel vs. Sir Tony Hoare

vs.

9
Relative Completeness

Theorem (Cook (1974))

\[\forall P, Q \in \text{Assn}, c \in \text{Com}. \models \{ P \} c \{ Q \} \implies \vdash \{ P \} c \{ Q \}. \]
Relative Completeness

Theorem (Cook (1974))

\[\forall P, Q \in \text{Assn}, c \in \text{Com}. \ implies \ \vdash \{P\} c \{Q\} \ implies \ \vdash \{P\} c \{Q\}. \]

Proof Sketch.

Let \{P\} c \{Q\} be a valid partial correctness specification.
By the first Lemma we have \vdash P \implies wlp(c, Q).
By the second Lemma we have \vdash \{wlp(c, Q)\} c \{Q\}.
We conclude \vdash \{P\} c \{Q\} using the CONSEQUENCE rule.