Lecture 10
Hoare Logic
Overview

Last time

- Assertion language: P
- Assertion satisfaction: $\sigma \models_I P$
- Assertion validity: $\models P$
- Partial/total correctness statements: $\{P\} c \{Q\}$ and $[P] c [Q]$
- Partial correctness satisfaction $\sigma \models_I \{P\} c \{Q\}$
- Partial correctness validity: $\models \{P\} c \{Q\}$

Today

- Hoare Logic
- Examples
- Metatheory
Definition (Partial correctness satisfaction)

A partial correctness statement \(\{P\} \leftrightarrow \{Q\} \) is satisfied by store \(\sigma \) and interpretation \(I \), written \(\sigma \models_I \{P\} \leftrightarrow \{Q\} \), if:

\[
\forall \sigma'. \text{ if } \sigma \models_I P \text{ and } C[c] \sigma = \sigma' \text{ then } \sigma' \models_I Q
\]

Definition (Partial correctness validity)

A partial correctness statement is valid (written \(\models \{P\} \leftrightarrow \{Q\} \)), if it is satisfied by any store and interpretation: \(\forall \sigma, I. \sigma \models_I \{P\} \leftrightarrow \{Q\} \).
Want a way to prove partial correctness statements valid...

... without having to consider explicitly every store and interpretation!
Hoare Logic

Want a way to prove partial correctness statements valid...

... without having to consider explicitly every store and interpretation!

Idea: Develop a formal proof system as an inductively-defined set! Every member of the set will be a valid partial correctness statement.

We’ll define a judgment of the form \(\vdash \{ P \} c \{ Q \} \) using inference rules.
Hoare Logic: Skip

\[\vdash \{ P \} \text{skip} \{ P \} \]
Hoare Logic: Assignment (this one’s weird)

\[\vdash \{P[a/x]\} \ x := a \ \{P\} \
\text{ASSIGN} \]
Assume:

\[\vdash \{ P[a/x] \} \ x := a \ \{ P \} \]

Assign

Notation: $P[a/x]$ denotes substitution of a for x in P
\[\vdash \{ P[a/x] \} x := a \{ P \} \]

Assign

Notation: \(P[a/x] \) denotes substitution of \(a \) for \(x \) in \(P \)

\[\{ \} x := 5 \{ x = 5 \} \]
Hoare Logic: Assignment (this one’s weird)

\[\vdash \{ P[a/x] \} x := a \{ P \} \quad \text{Assign} \]

Notation: \(P[a/x] \) denotes substitution of \(a \) for \(x \) in \(P \)

\[\{5 = 5\} x := 5 \{x = 5\} \]
Hoare Logic: Broken Assignment

The rule for assignment is definitely not:

\[\{P\} x := a \{P[a/x]\} \]

BROKENASSIGN
Hoare Logic: Broken Assignment

The rule for assignment is definitely not:

\[
\vdash \{P\} x := a \{P[a/x]\} \quad \text{BROKENASSIGN}
\]

\[
\{x = 0\} x := 5 \{ \quad \}
\]
Hoare Logic: Broken Assignment

The rule for assignment is definitely not:

\[\vdash \{ P \} \ x := a \ \{ P[a/x] \} \]

\[\{ x = 0 \} \ x := 5 \ \{ 5 = 0 \} \]

\[\text{BROKENASSIGN} \]
The rule for assignment is definitely not:

\[\vdash \{ P \} \ x := a \ \{ P[a/x] \} \ \text{BROKENASSIGN} \]

\[\{ x = 0 \} \ x := 5 \ \{ 5 = 0 \} \]

\[\vdash \{ P \} \ x := a \ \{ P[x/a] \} \ \text{BROKENASSIGN2} \]
Hoare Logic: Broken Assignment

The rule for assignment is definitely not:

\[
\vdash \{ P \} \ x := a \ {P[a/x]} \quad \text{BROKENASSIGN}
\]

\[
\{x = 0\} \ x := 5 \ \{5 = 0\}
\]

\[
\vdash \{ P \} \ x := a \ {P[x/a]} \quad \text{BROKENASSIGN2}
\]

\[
\{x = 0\} \ x := 5 \ \{
\}
\]
Hoare Logic: Broken Assignment

The rule for assignment is definitely not:

\[\models \{ P \} \; x := a \; \{ P[a/x] \} \quad \text{\text{\textsc{BroKENASSIGN}}} \]

\{ x = 0 \} \; x := 5 \; \{ 5 = 0 \}

\[\models \{ P \} \; x := a \; \{ P[x/a] \} \quad \text{\text{\textsc{BroKENASSIGN2}}} \]

\{ x = 0 \} \; x := 5 \; \{ x = 0 \} \]
Here’s the correct rule again:

\[\vdash \{ P[a/x] \} \ x := a \ \{ P \} \quad \text{ASSIGN} \]

\[\{ 5 = 5 \} \ x := 5 \ \{ x = 5 \} \]
Hoare Logic: Sequence

\[\vdash \{ P \} \quad c_1 \quad \{ R \} \quad \vdash \{ R \} \quad c_2 \quad \{ Q \} \]

\[\vdash \{ P \} \quad c_1 \; ; \; c_2 \quad \{ Q \} \quad \text{SEQ} \]
Hoare Logic: Conditionals

\[\vdash \{ P \land b \} \ c_1 \ \{ Q \} \quad \vdash \{ P \land \neg b \} \ c_2 \ \{ Q \} \]

\[\vdash \{ P \} \ \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \ \{ Q \} \]
Hoare Logic: Loops

\[\begin{align*} &\vdash \{ P \land b \} \ c \ \{ P \} \\
&\vdash \{ P \} \ \text{while} \ b \ \text{do} \ c \ \{ P \land \neg b \} \quad \text{WHILE} \end{align*} \]

\(P \) works as a loop invariant.
Hoare Logic: Consequence

\[
\begin{array}{c}
\models P \implies P' \quad \vdash \{P'\} \; c \; \{Q'\} \quad \models Q' \implies Q \\
\hline
\vdash \{P\} \; c \; \{Q\}
\end{array}
\]

Consequence

Recall: \(\models P \implies P'\) denotes assertion validity.

It’s always free to strengthen pre-conditions and weaken post-conditions.
\[\vdash \{ P \} \text{skip} \{ P \} \quad \text{SKIP} \]

\[\vdash \{ P[a/x] \} \; x := a \; \{ P \} \quad \text{ASSIGN} \]

\[\vdash \{ P \} \; c_1 \; \{ R \} \quad \vdash \{ R \} \; c_2 \; \{ Q \} \quad \vdash \{ P \} \; c_1 ; \; c_2 \; \{ Q \} \quad \text{SEQ} \]

\[\vdash \{ P \land b \} \; c_1 \; \{ Q \} \quad \vdash \{ P \land \neg b \} \; c_2 \; \{ Q \} \quad \vdash \{ P \} \; \text{if} \; b \; \text{then} \; c_1 \; \text{else} \; c_2 \; \{ Q \} \quad \text{IF} \]

\[\vdash \{ P \land b \} \; c \; \{ P \} \quad \vdash \{ P \} \; \text{while} \; b \; \text{do} \; c \; \{ P \land \neg b \} \quad \text{WHILE} \]

\[\models P \Rightarrow P' \quad \vdash \{ P' \} \; c \; \{ Q' \} \quad \models Q' \Rightarrow Q \quad \text{CONSEQUENCE} \]
Example: Factorial

\[\{ x = n \land n > 0 \} \]

\[
y := 1;
\textbf{while} \ x > 0 \textbf{ do}
\]

\[
(y := y \ast x;
\textbf{ x := } x - 1)
\]

\[\{ y = n! \} \]
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Completeness: If it’s true, then a proof exists.
Soundness and Completeness

Definition (Soundness)

If $\vdash \{P\} \triangleright \{Q\}$ then $\models \{P\} \triangleright \{Q\}$.

Definition (Completeness)

If $\models \{P\} \triangleright \{Q\}$ then $\vdash \{P\} \triangleright \{Q\}$.

Today: Soundness

Next time: *Relative* completeness
Soundness and Completeness

Theorem (Soundness)

If $\vdash \{P\} c \{Q\}$ then $|= \{P\} c \{Q\}$.
Soundness and Completeness

Theorem (Soundness)

\[\text{If } \vdash \{ P \} \triangleright \{ Q \} \text{ then } \models \{ P \} \triangleright \{ Q \}. \]

Proof.

By induction on derivation of \(\vdash \{ P \} \triangleright \{ Q \} \ldots \)

Definition (Completeness)

If $\models \{P\} c \{Q\}$ then $\vdash \{P\} c \{Q\}$.

Consequence: spoils completeness:

$\models \{P\} \Rightarrow \{P\}'$ $\vdash \{P\}' c \{Q\}'$

$\models \{Q\}' \Rightarrow \{Q\}$ $\vdash \{P\} c \{Q\}$.

Definition (Relative completeness)

Hoare logic is no more incomplete than those implications.
Soundness and Completeness

Definition (Completeness)

If $\models \{P\} c \{Q\}$ then $\vdash \{P\} c \{Q\}$.

CONSEQUENCE spoils completeness:

$$
\begin{align*}
\models P \Rightarrow P' & \quad \vdash \{P'\} c \{Q'\} \quad \models Q' \Rightarrow Q \\
\vdash \{P\} c \{Q\}
\end{align*}
$$
Soundness and Completeness

Definition (Completeness)

If $\models \{P\} c \{Q\}$ then $\vdash \{P\} c \{Q\}$.

CONSEQUENCE spoils completeness:

$$
\models P \Rightarrow P' \quad \models \{P'\} c \{Q'\} \quad \models Q' \Rightarrow Q
\Rightarrow
\models \{P\} c \{Q\}
$$

Definition (Relative completeness)

Hoare logic is *no more incomplete* than those implications.