Lecture 17
Definitional Translation & Continuations
Definitional Translation

We know how to encode Booleans, conditionals, natural numbers, and recursion in λ-calculus.

Can we define a *real* programming language by translating everything in it into the λ-calculus?
Definitional Translation

We know how to encode Booleans, conditionals, natural numbers, and recursion in λ-calculus.

Can we define a real programming language by translating everything in it into the λ-calculus?

In definitional translation, we define a denotational semantics where the target is a simpler programming language instead of mathematical objects.
Multi-Argument λ-calculus

Let’s define a version of the λ-calculus that allows functions to take multiple arguments.

$$e ::= x \mid \lambda x_1, \ldots, x_n. e \mid e_0 e_1 \ldots e_n$$
Multi-Argument λ-calculus

We can define a CBV operational semantics:

$$E ::= [\cdot] \mid v_0 \ldots v_{i-1} \ E e_{i+1} \ldots \ e_n$$

$$e \rightarrow e'$$

$$\frac{\text{CONTEXT}}{E[e] \rightarrow E[e']}$$

$$\frac{(\lambda x_1, \ldots, x_n. \ e_0) \ v_1 \ldots v_n \rightarrow (e_0 \{v_1/x_1\} \{v_2/x_2\}) \ldots \{v_n/x_n\}}{\beta}$$

The evaluation contexts ensure that we evaluate multi-argument applications $e_0 \ e_1 \ldots \ e_n$ from left to right.
Definitional Translation

The multi-argument λ-calculus isn’t any more expressive than the pure λ-calculus.
Definitional Translation

The multi-argument λ-calculus isn’t any more expressive that the pure λ-calculus.

We can define a translation $\mathcal{T}[\cdot]$ that takes an expression in the multi-argument λ-calculus and returns an equivalent expression in the pure λ-calculus.
Definitional Translation

The multi-argument λ-calculus isn’t any more expressive than the pure λ-calculus.

We can define a translation $\mathcal{T}[[\cdot]]$ that takes an expression in the multi-argument λ-calculus and returns an equivalent expression in the pure λ-calculus.

$$
\begin{align*}
\mathcal{T}[[x]] & \triangleq x \\
\mathcal{T}[[\lambda x_1, \ldots, x_n. e]] & \triangleq \lambda x_1. \ldots \lambda x_n. \mathcal{T}[[e]] \\
\mathcal{T}[[e_0 e_1 e_2 \ldots e_n]] & \triangleq (\ldots ((\mathcal{T}[[e_0]] \mathcal{T}[[e_1]]) \mathcal{T}[[e_2]]) \ldots \mathcal{T}[[e_n]])
\end{align*}
$$

This translation curries the multi-argument λ-calculus.
Products (Pairs) and Let

Syntax

\[e ::= x \]
\[\ | \lambda x. e \]
\[\ | e_1 e_2 \]
\[\ | (e_1, e_2) \]
\[\ | #1 e \]
\[\ | #2 e \]
\[\ | \text{let } x = e_1 \text{ in } e_2 \]

\[v ::= \lambda x. e \]
\[\ | (v_1, v_2) \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E \, e \]
\[\mid \nu \, E \]
\[\mid (E, \, e) \]
\[\mid (\nu, \, E) \]
\[\mid \#1 \, E \]
\[\mid \#2 \, E \]
\[\mid \text{let } x = E \text{ in } e_2 \]
Products (Pairs) and Let

Semantics

\[
e \rightarrow e' \\
\frac{e \rightarrow e'}{E[e] \rightarrow E[e']}
\]

\[
\beta \\
(\lambda x. e) v \rightarrow e\{v/x\}
\]

\[
\#1 \ (v_1, v_2) \rightarrow v_1 \\
\#2 \ (v_1, v_2) \rightarrow v_2
\]

\[
\text{let } x = v \text{ in } e \rightarrow e\{v/x\}
\]
Products (Pairs) and Let

Translation

\[
\begin{align*}
\mathcal{T}[x] &= x \\
\mathcal{T}[\lambda x. e] &= \lambda x. \mathcal{T}[e] \\
\mathcal{T}[e_1 e_2] &= \mathcal{T}[e_1] \mathcal{T}[e_2] \\
\mathcal{T}[(e_1, e_2)] &= (\lambda x. \lambda y. \lambda f. f x y) \mathcal{T}[e_1] \mathcal{T}[e_2] \\
\mathcal{T}[\#1 e] &= \mathcal{T}[e] (\lambda x. \lambda y. x) \\
\mathcal{T}[\#2 e] &= \mathcal{T}[e] (\lambda x. \lambda y. y) \\
\mathcal{T}[\text{let } x = e_1 \text{ in } e_2] &= (\lambda x. \mathcal{T}[e_2]) \mathcal{T}[e_1]
\end{align*}
\]
Laziness

Consider the call-by-name \(\lambda \)-calculus...

Syntax

\[
e ::= x \\
| e_1 e_2 \\
| \lambda x. e
\]

\[
\nu ::= \lambda x. e
\]

Semantics

\[
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2}
\]

\[
(\lambda x. e_1) e_2 \rightarrow e_1\{e_2/x\} \quad \beta
\]
Laziness

Translation

\[T[x] = x (\lambda y. y) \]
\[T[\lambda x. e] = \lambda x. T[e] \]
\[T[e_1 e_2] = T[e_1] (\lambda z. T[e_2]) \quad \text{z is not a free variable of } e_2 \]
Syntax

\[
e ::= x \\
\quad | \lambda x. e \\
\quad | e_0 \ e_1
\]

\[
v ::= \lambda x. e
\]
Syntax

\[e ::= x \]
\[\quad \mid \lambda x. e \]
\[\quad \mid e_0 e_1 \]
\[\quad \mid \text{ref } e \]

\[\nu ::= \lambda x. e \]
Syntax

\[e ::= x \]
\[\quad | \ \lambda x. \ e \]
\[\quad | \ e_0 \ e_1 \]
\[\quad | \ \text{ref} \ e \]
\[\quad | \ !e \]

\[\nu ::= \lambda x. \ e \]
References

Syntax

\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_0 e_1 \]
\[\quad | \text{ref } e \]
\[\quad | !e \]
\[\quad | e_1 ::= e_2 \]

\[\nu ::= \lambda x. e \]
\[e ::= x \]
\[\quad | \lambda x. e \]
\[\quad | e_0 e_1 \]
\[\quad | \text{ref } e \]
\[\quad | !e \]
\[\quad | e_1 ::= e_2 \]
\[\quad | \ell \]

\[\nu ::= \lambda x. e \]
Syntax

e ::= x
 | λx. e
 | e_0 e_1
 | ref e
 | !e
 | e_1 := e_2
 | ℓ

ν ::= λx. e
 | ℓ
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E e \]
\[\mid v E \]
References

Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E \, e \]
\[\mid \nu \, E \]
\[\mid \text{ref} \, E \]
References

Evaluation Contexts

\[E ::= [\cdot] \]

\[E e \]

\[\nu E \]

\[\text{ref } E \]

\[!E \]
Evaluation Contexts

\[E ::= [\cdot] \\
| E \ e \\
| \nu \ E \\
| \text{ref} \ E \\
| !E \\
| E ::= e \]
Evaluation Contexts

\[E ::= [\cdot] \]
\[\mid E \ e \]
\[\mid \nu E \]
\[\mid \text{ref} \ E \]
\[\mid \! E \]
\[\mid E ::= e \]
\[\mid \nu ::= E \]
Semantics

\[\sigma : \text{Loc} \rightarrow \text{Val} \]

\[
\begin{align*}
\langle \sigma, e \rangle & \rightarrow \langle \sigma', e' \rangle \\
\langle \sigma, E[e] \rangle & \rightarrow \langle \sigma', E[e'] \rangle
\end{align*}
\]

\[
\langle \sigma, (\lambda x. e) \, v \rangle \rightarrow \langle \sigma, e\{v/x\} \rangle
\]

\[
\frac{\ell \not\in \text{dom}(\sigma)}{\langle \sigma, \text{ref} \, v \rangle \rightarrow \langle \sigma[\ell \mapsto v], \ell \rangle}
\]

\[
\frac{\sigma(\ell) = v}{\langle \sigma, !\ell \rangle \rightarrow \langle \sigma, v \rangle}
\]

\[
\langle \sigma, \ell := v \rangle \rightarrow \langle \sigma[\ell \mapsto v], v \rangle
\]
References

Translation

...left as an exercise to the reader. ;-)
Adequacy

How do we know if a translation is correct?
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

\[\forall e \in \text{Exp}_{\text{src}} \text{. if } T[e] \rightarrow_{\text{trg}}^* \nu' \text{ then } \exists \nu. e \rightarrow_{\text{src}}^* \nu \]

and \(\nu' \) equivalent to \(\nu \)
Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

\[\forall e \in \text{Exp}_{\text{src}}. \text{if } \mathcal{T}[e] \rightarrow^{*}_{\text{trg}} v' \text{ then } \exists v. e \rightarrow^{*}_{\text{src}} v \]

and \(v' \) equivalent to \(v \)

...and every source evaluation should have a target evaluation:

Definition (Completeness)

\[\forall e \in \text{Exp}_{\text{src}}. \text{if } e \rightarrow^{*}_{\text{src}} v \text{ then } \exists v'. \mathcal{T}[e] \rightarrow^{*}_{\text{trg}} v' \]

and \(v' \) equivalent to \(v \)
Continuations

In the preceding translations, the control structure of the source language was translated directly into the corresponding control structure in the target language.

For example:

$$\mathcal{T}[\lambda x. e] = \lambda x. \mathcal{T}[e]$$
$$\mathcal{T}[e_1 e_2] = \mathcal{T}[e_1] \mathcal{T}[e_2]$$

What can go wrong with this approach?
Continuations

- A snippet of code that represents “the rest of the program”
- Can be used directly by programmers...
- ...or in program transformations by a compiler
- Make the control flow of the program explicit
- Also useful for defining the meaning of features like exceptions
Example

Consider the following expression:

$$(\lambda x. x) \ ((1 + 2) + 3) + 4$$
Example

Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda v. (\lambda x. x) v\]
Example

Consider the following expression:

$$(\lambda x. x) \left((1 + 2) + 3 \right) + 4$$

If we make all of the continuations explicit, we obtain:

$$k_0 = \lambda v. (\lambda x. x) \, v$$
$$k_1 = \lambda a. k_0 \, (a + 4)$$
Example

Consider the following expression:

$$(\lambda x. x) \left((1 + 2) + 3 \right) + 4$$

If we make all of the continuations explicit, we obtain:

$$k_0 = \lambda v. (\lambda x. x) \, v$$
$$k_1 = \lambda a. k_0 \, (a + 4)$$
$$k_2 = \lambda b. k_1 \, (b + 3)$$
Example

Consider the following expression:

$$(\lambda x . x) ((1 + 2) + 3) + 4$$

If we make all of the continuations explicit, we obtain:

$$k_0 = \lambda v . (\lambda x . x) \, v$$
$$k_1 = \lambda a . k_0 \, (a + 4)$$
$$k_2 = \lambda b . k_1 \, (b + 3)$$
$$k_3 = \lambda c . k_2 \, (c + 2)$$
Example

Consider the following expression:

\[(\lambda x. x) ((1 + 2) + 3) + 4\]

If we make all of the continuations explicit, we obtain:

\[k_0 = \lambda v. (\lambda x. x) v\]
\[k_1 = \lambda a. k_0 (a + 4)\]
\[k_2 = \lambda b. k_1 (b + 3)\]
\[k_3 = \lambda c. k_2 (c + 2)\]

The original expression is equivalent to \(k_3 1\), or:

\[(\lambda c. (\lambda b. (\lambda a. (\lambda v. (\lambda x. x) v) (a + 4)) (b + 3)) (c + 2)) 1\]
Example (Continued)

Recall that let $x = e$ in e' is syntactic sugar for $(\lambda x. e') e$.

Hence, we can rewrite the expression with continuations more succinctly as

\[
\begin{align*}
\text{let } c &= 1 \text{ in } \\
\text{let } b &= c + 2 \text{ in } \\
\text{let } a &= b + 3 \text{ in } \\
\text{let } \nu &= a + 4 \text{ in } \\
(\lambda x. x) \nu
\end{align*}
\]
CPS Transformation

We write $CPS[e] \ k = \ldots$ instead of $CPS[e] = \lambda k. \ldots$

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[CPS[n] k = k n \]

We write \(CPS[e] k = \ldots \) instead of \(CPS[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[CPS[n] k = kn \]
\[CPS[e_1 + e_2] k = CPS[e_1] (\lambda n. CPS[e_2] (\lambda m. k (n + m))) \]

We write \(CPS[e] k = \ldots \) instead of \(CPS[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\text{CPS}[n] \, k = k \, n \\
\text{CPS}[e_1 + e_2] \, k = \text{CPS}[e_1] \, (\lambda n. \text{CPS}[e_2] \, (\lambda m. k \, (n + m))) \\
\text{CPS}[(e_1, e_2)] \, k = \text{CPS}[e_1] \, (\lambda v. \text{CPS}[e_2] \, (\lambda w. k \, (v, w)))
\]

We write \(\text{CPS}[e] \, k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = kn \]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \]
\[\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \]
\[\text{CPS}[\#1 e] k = \text{CPS}[e] (\lambda v. k (#1 v)) \]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[CPS[n] k = kn \]
\[CPS[e_1 + e_2] k = CPS[e_1] (\lambda n. CPS[e_2] (\lambda m. k (n + m))) \]
\[CPS[(e_1, e_2)] k = CPS[e_1] (\lambda v. CPS[e_2] (\lambda w. k (v, w))) \]
\[CPS[\#1 e] k = CPS[e] (\lambda v. k (\#1 v)) \]
\[CPS[\#2 e] k = CPS[e] (\lambda v. k (\#2 v)) \]

We write \(CPS[e] k = \ldots \) instead of \(CPS[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[\text{CPS}[n] k = k \times n \]
\[\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \]
\[\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \]
\[\text{CPS}[\#1 e] k = \text{CPS}[e] (\lambda v. k (\#1 v)) \]
\[\text{CPS}[\#2 e] k = \text{CPS}[e] (\lambda v. k (\#2 v)) \]
\[\text{CPS}[x] k = k \times x \]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\begin{align*}
\text{CPS}[n] k &= k n \\
\text{CPS}[e_1 + e_2] k &= \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m))) \\
\text{CPS}[(e_1, e_2)] k &= \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w))) \\
\text{CPS}[#1/e] k &= \text{CPS}[e] (\lambda v. k (#1 v)) \\
\text{CPS}[#2/e] k &= \text{CPS}[e] (\lambda v. k (#2 v)) \\
\text{CPS}[x] k &= k x \\
\text{CPS}[(\lambda x. e)] k &= k (\lambda x. \lambda k'. \text{CPS}[e] k')
\end{align*}
\]

We write \(\text{CPS}[e] k = \ldots \) instead of \(\text{CPS}[e] = \lambda k. \ldots \)

We assume that the new variables introduced are “fresh.”
CPS Transformation

\[
\text{CPS}[n] k = kn
\]
\[
\text{CPS}[e_1 + e_2] k = \text{CPS}[e_1] (\lambda n. \text{CPS}[e_2] (\lambda m. k (n + m)))
\]
\[
\text{CPS}[(e_1, e_2)] k = \text{CPS}[e_1] (\lambda v. \text{CPS}[e_2] (\lambda w. k (v, w)))
\]
\[
\text{CPS}[\#1 e] k = \text{CPS}[e] (\lambda v. k (\#1 v))
\]
\[
\text{CPS}[\#2 e] k = \text{CPS}[e] (\lambda v. k (\#2 v))
\]
\[
\text{CPS}[x] k = kx
\]
\[
\text{CPS}[\lambda x. e] k = k (\lambda x. \lambda k'. \text{CPS}[e] k')
\]
\[
\text{CPS}[e_1 e_2] k = \text{CPS}[e_1] (\lambda f. \text{CPS}[e_2] (\lambda v. f v k))
\]

We write \(\text{CPS}[e] k = \ldots\) instead of \(\text{CPS}[e] = \lambda k. \ldots\)

We assume that the new variables introduced are “fresh.”