Lecture 27
Recursive Types
Many languages support data types that refer to themselves:

Java

class Tree {
 Tree leftChild, rightChild;
 int data;
}

OCaml

type tree = Leaf | Node of tree * tree * int

-Law of the Excluded Middle
Recursive Types

Many languages support data types that refer to themselves:

Java

```java
class Tree {
    Tree leftChild, rightChild;
    int data;
}
```

OCaml

```ocaml
type tree = Leaf | Node of tree * tree * int
```
Recursive Types

Many languages support data types that refer to themselves:

Java

class Tree {
 Tree leftChild, rightChild;
 int data;
}

OCaml

type tree = Leaf | Node of tree * tree * int

\(\lambda\)-calculus?

tree = \textbf{unit} + \textbf{int} \times tree \times tree
We would like \texttt{tree} to be a solution of the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]

However, no such solution exists with the types we have so far...
Unwinding Equations

We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]
We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]

\[= \text{unit} + \text{int} \times (\text{unit} + \text{int} \times \alpha \times \alpha) \times (\text{unit} + \text{int} \times \alpha \times \alpha) \]
Unwinding Equations

We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha))
\]

If we take the limit of this process, we have an infinite tree.
We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times (\text{unit} + \text{int}) \times \alpha) \times \\
(\text{unit} + \text{int} \times (\text{unit} + \text{int}) \times \alpha) \\
= \ldots
\]
Unwinding Equations

We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
\hspace{1cm} (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\hspace{1cm} (\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \text{unit} + \text{int} \times \\
\hspace{1cm} (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\hspace{1cm} (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\hspace{1cm} (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\hspace{1cm} (\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \ldots
\]

If we take the limit of this process, we have an infinite tree.
Infinite Types

Think of this as an infinite labeled graph whose nodes are labeled with the type constructors \times, $+$, \texttt{int}, and \texttt{unit}.

This infinite tree is a solution of our equation, and this is what we take as the type \texttt{tree}.
We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* μ.

$\mu \alpha. \tau$
We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* μ.

$$\mu \alpha. \tau$$

Here’s a **tree** type satisfying our original equation:

$$\text{tree} \triangleq \mu \alpha. \text{unit} \times \text{int} \times \alpha \times \alpha.$$
Static Semantics (Equirecursive)

We’ll define two treatments of recursive types. With *equirecursive types*, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau\{\mu \alpha. \tau / \alpha\} \]
We’ll define two treatments of recursive types. With \textit{equirecursive types}, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau\{\mu \alpha. \tau/\alpha\} \]

Two typing rules let us switch between folded and unfolded:

\[\Gamma \vdash e : \tau\{\mu \alpha. \tau/\alpha\} \]

\[\frac{}{\Gamma \vdash e : \mu \alpha. \tau} \quad \mu\text{-INTRO} \]

\[\Gamma \vdash e : \mu \alpha. \tau \]

\[\frac{}{\Gamma \vdash e : \tau\{\mu \alpha. \tau/\alpha\}} \quad \mu\text{-ELIM} \]
Isorecursive Types

Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau / \alpha\}$.
Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau / \alpha\}$.

Converting between the two uses explicit **fold** and **unfold** operations:

\[
\text{unfold}_{\mu \alpha. \tau} : \mu \alpha. \tau \rightarrow \tau\{\mu \alpha. \tau / \alpha\}
\]

\[
\text{fold}_{\mu \alpha. \tau} : \tau\{\mu \alpha. \tau / \alpha\} \rightarrow \mu \alpha. \tau
\]
The typing rules introduce and eliminate μ-types:

$$\Gamma \vdash e : \tau\{\mu\alpha.\tau/\alpha\}$$

$$\Gamma \vdash \text{fold } e : \mu\alpha.\tau$$ \hspace{1cm} \text{μ-INTRO}

$$\Gamma \vdash e : \mu\alpha.\tau$$

$$\Gamma \vdash \text{unfold } e : \tau\{\mu\alpha.\tau/\alpha\}$$ \hspace{1cm} \text{μ-ELIM}
Dynamic Semantics

We also need to augment the operational semantics:

\[
\text{unfold (fold } e) \rightarrow e
\]

Intuitively, to access data in a recursive type $\mu \alpha. \tau$, we need to **unfold** it first. And the only way that values of type $\mu \alpha. \tau$ could have been created is via **fold**.
Example

Here’s a recursive type for lists of numbers:

\[
\text{intlist} \triangleq \mu \alpha. \ \text{unit} + \text{int} \times \alpha.
\]
Example

Here’s a recursive type for lists of numbers:

\[
\text{intlist} \triangleq \mu\alpha. \text{unit} + \text{int} \times \alpha.
\]

Here’s how to add up the elements of an intlist:

\[
\begin{align*}
\text{let sum} &= \\
&= \text{fix } (\lambda f : \text{intlist} \to \text{intlist} \\
&\quad \; \lambda l : \text{intlist}. \text{case unfold } l \text{ of} \\
&\quad \quad (\lambda u : \text{unit}. 0) \\
&\quad \quad \mid (\lambda p : \text{int} \times \text{intlist}. (\#1 p) + f(\#2 p)))
\end{align*}
\]
Encoding Numbers

Recursive types let us encode the natural numbers!
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha
\]
Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\begin{align*}
\text{nat} & \triangleq \mu \alpha. \text{unit} + \alpha \\
0 & \triangleq \text{fold} (\text{inl}_{\text{unit} + \text{nat}} ())
\end{align*}
\]
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha \\
0 \triangleq \text{fold } (\text{inl}_{\text{unit} + \text{nat}}()) \\
1 \triangleq \text{fold } (\text{inr}_{\text{unit} + \text{nat}}0) \\
2 \triangleq \text{fold } (\text{inr}_{\text{unit} + \text{nat}}1), \\
\vdots
\]
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha
\]

\[
0 \triangleq \text{fold} (\text{inl}_{\text{unit} + \text{nat}}())
\]

\[
1 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}}0)
\]

\[
2 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}}1),
\]

\[
\vdots
\]

The successor function has type \text{nat} \rightarrow \text{nat}:

\[
(\lambda x : \text{nat}. \text{fold} (\text{inr}_{\text{unit} + \text{nat}}x))
\]
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x \quad \Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x \quad \Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

Self-Application and Ω

Recall Ω defined as:

$$
\omega \triangleq \lambda x. x \, x \quad \Omega \triangleq \omega \, \omega.
$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

x is used as the argument to this function, so it must have type σ.
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x$$

$$\Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

x is used as the argument to this function, so it must have type σ.

So let’s write a type equation:

$$\sigma = \sigma \rightarrow \tau$$
Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) \, x$$
Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) \ x$$

The type of ω is $(\mu \alpha. (\alpha \rightarrow \tau)) \rightarrow \tau$.

So the type of $\text{fold } \omega$ is $\mu \alpha. (\alpha \rightarrow \tau)$.
Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \to \tau). (\text{unfold } x) x$$

The type of ω is $(\mu \alpha. (\alpha \to \tau)) \to \tau$.

So the type of $\text{fold } \omega$ is $\mu \alpha. (\alpha \to \tau)$.

Now we can define $\Omega = \omega (\text{fold } \omega)$. It has type τ.
We can even write ω in OCaml:

```ocaml
# type u = Fold of (u -> u);;
type u = Fold of (u -> u)
# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>
# omega (Fold omega);;
...runs forever until you hit control-c
```
With recursive types, we can type everything in the untyped lambda calculus!
Encoding λ-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every λ-term can be applied as a function to any other λ-term. So let’s define an “untyped” type:

$$U \triangleq \mu \alpha. \alpha \to \alpha$$
Encoding λ-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every λ-term can be applied as a function to any other λ-term. So let’s define an “untyped” type:

$$ U \triangleq \mu \alpha. \alpha \rightarrow \alpha $$

The full translation is:

$$ [x] \triangleq x $$

$$ [e_0 \ e_1] \triangleq (\text{unfold} \ [e_0]) \ [e_1] $$

$$ [\lambda x. \ e] \triangleq \text{fold} \ \lambda x : U. \ [e] $$

Every untyped term maps to a term of type U.